
Reinforcement Learning

So far, we had a well-defined set of training examples.

What if feedback is not so clear?

E.g., when playing a game, only after many actions

final result: win, loss, or draw.

In general, agent exploring environment, delayed

feedback: survival or not . . . (evolution)
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Issue: delayed rewards / feedback.

Field: reinforcement learing

Main success: Tesauro’s backgammon player

(TD Gammon).

start from random play; millions of games

world-level performance (changed game itself)

Chapter 20 R& N.
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Imagine agent wandering around in environment.

How does it learn utility values of each state?

(i.e., what are good / bad states? avoid bad ones...)

Reinforcement learning will tell us how!
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Compare: in backgammon game: states = boards.

only clear feedback in final states (win/loss).

We want to know utility of the other states

Intuitively: utility = chance of winning.

At first, we only know this for the end states.

Reinforcement learning: computes for intermediate

states. Play by moving to maximum utility states!

back to simplified world . . .
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Example of passive learning in a

known environment.

Agent just wanders from state to state.

Each transition is made with a fixed probability.

Initially: only two known reward positions:

State (4,2) — a loss / poison / reward −1 (utility)

State (4,3) — a win / food / reward +1 (utility)

How does the agent learn about the utility, i.e.,

expected value, of the other states?
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Three strategies:

(a) “Sampling” (Naive updating)

(b) “Calculation” / “Equation solving”

(Adaptive dynamic programming)

(c) “in between (a) and (b)”

(Temporal Difference Learning — TD learning)

used for backgammon
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Naive updating

(a) “Sampling” — agent makes random runs

through environment; collect statistics on

final payoff for each state (e.g. when at (2,3),

how often do you reach +1 vs. −1?)

Learning algorithm keeps a running average

for each state. Provably converges to true

expected values (utilities).
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Main drawback: slow convergence.

See next figure.

In relatively small world takes agent

over 1000 sequences to get a reasonably

small (< 0.1) root-mean-square error compared with

true expected values.
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Question: Is sampling necessary?

Can we do something completely different?

Note: agent knows the environment (i.e. probability

of state transitions) and final rewards.
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Upon, refection we note that the utilities

must be completely defined by what the agent

already knows about the environment.
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Adaptive dynamic programming

Some intuition first.

Consider U(3, 3)

From figure we see that

U(3, 3) = 0.33× U(4, 3) + 0.33× U(2, 3) + 0.33× U(3, 2)

= 0.33× 1.0 + 0.33× 0.0886 + 0.33×−0.4430

= 0.2152

Check e.g. U(3, 1) yourself.
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Utilities follow basic laws of probabilities:

write down equations; solve for unknowns.

Utilities follow from:

U(i) = R(i) +
∑

j Mi,jU(j) (⋆)

(note: i, j over states.)

R(i) is the reward associated with being in state i.

(often non-zero for only a few end states)

Mi,j is the probability of transition from state i to j.
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Dynamic programming style methods can be used to solve

the set of equations.

Major drawback: number of equations and number

of unknowns.

E.g. for backgammon: roughly 1050 equations with

1050 unknowns. Infeasibly large.
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Temporal difference learning

combine “sampling” with “calculation”

or stated differently: it’s using a sampling

approach to solve the set of equations.

Consider the transitions, observed by a wandering

agent.

Use an observed transition to adjust the utilities

of the observed states to bring them closer to

the constraint equations.

Slide CS472–22



Temporal difference learning

When observing a transition from i to j,

bring U(i) value closer to that of U(j)

Use update rule:

U(i)← U(i) + α(R(i) + U(j)− U(i)) (⋆⋆)

α is the learning rate parameter

rule is called the temporal-difference or TD

equation. (note we take the difference between successive

states.)
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At first blush, the rule:

U(i)← U(i) + α(R(i) + U(j)− U(i)) (⋆⋆)

may appear to be a bad way to solve/approximate:

U(i) = R(i) +
∑

j Mi,jU(j) (⋆)

Note that (⋆⋆) brings U(i) closer to U(j) but

in (⋆) we really want the weighted average

over the neighboring states!

Issue resolves itself, because over time, we sample

from the transitions out of i. So, successive applications

of (⋆⋆) average over neighboring states.

(keep α appropriately small)
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Performance

Runs noisier than Naive Updating (averaging),

but smaller error.

In our 4x3 world, we get a root-mean-square error of less

than 0.07 after 1000 examples.

Also, note that compared to Adaptive Dynamic Programming

we only deal with observed states during sample runs.

I.e., in backgammon consider only a few hundreds of thousands

of states out of 1050. Represent utility function

implicitly (no table) in neural network.
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Reinforcement learning is a very rich domain

of study.

In some sense, touches on much of the core of AI.

“How does an agent learn to take the right actions

in its environment”

In general, pick action that leads to state with

highest utility as learned so far.
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E.g. in backgammon pick legal move leading

to state with highest expected payoff (chance of

winning). Initially moves random. But TD rule

starts learning from winning and losing games,

by moving utility values backwards. (states leading

to lost positions start getting low utility after

a series of TD rule applications; states leading

to wins see there utilities rise slowly.)
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Extensions

— Active learning — exploration.

now and then make new (non utility optimizing move)

see n-armed bandit problem p. 611 R&N.

— learning action-value functions

Q(a, i) denotes value of taking action a in state i

we have:

U(i) = maxaQ(a, i)
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— generalization in reinforcement learning

use implicit representation of utility function

e.g. a neural network as in backgammon.

input nodes encode board position

activation of output node gives utility

— genetic algorithms — feedback: fitness

done in search part.
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