CS 4700:
Foundations of Artificial Intelligence

Prof. Bart Selman

Machine Learning:
The Theory of Learning
R&N 18.5

Machine Learning Theory

Central question in machine learning:

How can we be sure that the hypothesis produced by a
learning alg. will produce the correct answer on

previously unseen examples?

Question in some sense too vague... Leads to the general
problem of inductive inference: How can we generalize

from data?

Major advance: Computational Learning Theory
Valiant 1984; Turing Award 2010.

Valiant’s Theory of Learning

Arguably the first big step to a rigorous understanding
of what it means for a machine to learn.
Compare: development of the theory of computation
Turing, Godel, Von Neumann

Just the beginning, still many open issues.

Computational Learning Theory

How can we put machine learning on a rigorous footing?

Major advance: Valiant, 1984.

Starting point:
Induction. So far, given training set,
learning algorithm generates hypothesis.

Run hypothesis on test set. Says something about how
good our hypothesis is. But, how much does it tell you?

Can you be certain??

Can never be absolutely certain about generalization...
(would have to see all examples)

Valiant’s insight: introduce probabilities to measure
degree of certainty.

Need Stationary assumption: that is,
training and test examples are drawn from the same
probability distributions.

Ex. try using “height” to distinguish men and women —
better draw people form the same distribution for

training and testing!

Now, we can never be absolutely certain that we have learn
our target (hidden) concept / function. (E.g., there is
a non-zero chance that, so far, we only saw a sequence
of “bad” examples.

E.g., relatively tall women and relatively short men ...

Luckily, we will see that it’s generally highly unlikely
to see a long series of bad examples!

Probabilities to the rescue: certain “bad” events (e.g.
learner learns the wrong hypothesis)
become exponentially rare with enough data.

Aside: Flipping A Coin

Assume, we're flipping a coin m times. We expect to observe
roughly 0.5 x m “heads”.

Let’s say we have a “bad run” (i.e., one that suggests that
the coin is not fair. Say, the bad run contains 10% more

heads than expected. L.e., p would appear to be 0.55!

(or higher.)
How likely / unlikely is that?

Concretely — What'’s the probability of
1) m = 100, run with more than 55 heads.
2) m = 1000, run with more than 550 heads.
3) m = 10,000, run with more than 5500 heads.

We can calculate these probabilities using the so-called
Chernoff bounds. (Also, Hoeffding.)
We have,

Pr[S > (p+~)m| < e 2™

Pr[S > (p—y)m] < e*™

Here, we have p = 0.5, v = 0.05.

S = # of “heads”

S = # of “heads”

m = 100 — Pr[S > 55| < 0.6
m = 1,000 — Pr[S > 550] <

m = 10,000 — P7[S > 5500} W

So, when flipping a fair coin 10,000 times, you’ll

“never, ever” see more than 5,500 heads. And, no one

ever will... L.e., with enough data, we can be very

certain that if coin is fair, we won’t see a “large” deviation
in terms of #heads vs. #tails.

10

Some more experimental data

11

C program

Runs of 100 flips (expect 50 “tails”):
On 1,000 tries reached 66
On 10,000 tries reached 69
On 100,000 tries reached 70
On 1,000,000 tries reached 74 (48% over 50)

Runs of 1000 flips (expect 500 “tails”):
On 1,000 tries reached 564
On 10,000 tries reached 564
On 100,000 tries reached 569
On 1,000,000 tries reached 579 (16% over 500)

12

Runs of 10,000 flips (expect 5000 “tails”):

On 1,000 tries reached 5150

On 10,000 tries reached 5183

On 100,000 tries reached 5231

On 1,000,000 tries reached 5239 (5% over 5000)
(note the difference with trying to reach 10% over!)

13

Coin example is the key to randomized algorithms.

You get pretty accurate very fast.

(relatively few flips.)

Also, makes interesting learning algorithms possible!

14

Bounds show how “rare” bad runs become in large samples!

xponential drop off — can get good results
ith modest number of examples (“polynomially m

Hope for polytime algorithms!
Aside: Can get pretty much *“certainty” out of
probabilistic phenomena / secret behind randomized glgs

E.g. estimating integrals / Monte-Carlo methods.
Worth considering!

15

PAC

probability our learning
will find an hypothesis that is approximately
identical to the hidden target concept.

Note: the double “hedging” — probably ... approximately...
Why do you need both levels of uncertainty (in general)?

Two issues: (1) (Re: High prob.) May get a “bad” sequence of
training examples (many “relatively short men). Small

risk but still small risk of getting wrong hypothesis.

(2) We only use a small set of all examples (otherwise not

real learning). So, we may not get hypothesis exactly correct.

Finally, want efficient learning --- polytime!!
16

ow Many Examples Are Needed?

(rather technica
e X is the set of all possible examples.

e [the distribution with which we draw examples.
e H set of possible hypotheses.

e . number of examples in training set.

Assume, the true function f is in H.

Valiant’s genius was to focus in on the “simplest” models
that still captured all the key aspects we want in a “learning
machine.” PAC role has been profound even though mainly
to shine a “theoretical” light.

17

error of a hypothesis i wrt f is defined as
the probability that h differs from f on a randomly
picked example:

error(h) = P(h(x) # f(z)|z drawn from D)

This is what we were trying to measure with our
test set before.

But, we don’t have f ...
Where do we get info about f7

18

Approximately Correct
h is approximately correct iff
error(h) < e.

Such an hypothesis lies withing an e-ball
of f. Rest of hypotheses H,,.

In words: We want h such that when we pick random
examples, only rarely does h misclassify an example
(i.e, with probability less than €).

19

Idea: show that after seeing m examples, with high
probability, all consistent hypothesis will be
approximately correct.

[.e., chance of a “bad” hypothesis (but consistent with the
examples) is small (less than 9).

For our learning algorithm, we simply use a method that

keeps the hypothesis consistent with all examples seen

so far. Can start out with an hypothesis that says “No”

to all examples. Then when first positive example comes

in, minimally modify hypothesis to make it consistent with that
example. Proceed doing that for every new pos example.

20

Let hy be a bad hypothesis, i.e, error(hy) > €.

So, chance h;, disagrees with an example > e.
So, prob. it agrees with a given example is < (1 — ¢€).

We have g h_b could mistakenly be learned!
P(hy agrees with m examples) < (1 —¢€)™

P(Hp,4 contains a hypth. consistent with m exs.)
< [Hpaa|(1 —€)™ < [H|(1 —¢)™

We would like to make this unlikely (< 4).

Note: we want to make it likely that all consistent
hypotheses are approximately correct. So, no “bad” consistent

hypothesis occur at all. 21

So,
H|(1 —¢)™ <.

It follows:
m > 1(Ins + In|H|). (1)

So, how can we keep the number of examples we need down?

€ and are assumed given

(set as desired)

Keep size hypothesis class H down.
Another showing of Ockham’s razor!

22

(1) says that if a learning alg. returns a hypothesis that is
consistent with this many examples, then with prob.
at least 1 — 4, the hypothesis has error of at most e.

(1) as a functio d ¢ is called
e sample complexity of the hypothesis space.
at we only ask from the learner to ome
othesis consistent with the m ex :
So, in this setting the requirements on our learning

algorithm are quite minimal. We do also want poly time
though.

23

Consider: H space of all Boolean functions.
H| = 22",
Sample complexity grows with 2.
Same as number of all possible examples!
Therefore, learning algorithm cannot do better than
lookup table, if it merely returns hypothesis

consistent with given examples.

What is this saying intuitively about H?
What does this mean for e.g neural nets?

Learning in general?

Aside: Shannon already noted that the vast majority
of Boolean functions on N letters look “random” and

cannot be compressed. (No structure!)

24

Solution

1) Force algorithm to look for “smallest” consistent hypothesis
We considered this for decision tree learning.
(often worst-case intractable)

2) Restrict form of Boolean function — size of hypotheses spa
E.g. if only hypotheses are conjunctions of literals,
then we only need poly number of examples!

Example: decision lists

25

Decision lists

Resemble decision trees, structure is simpler, decisions

are more complex.

vV WillWait(z, Some) < (Patrons(z, Some)
V(Patrons(z, Full) A Fri/Sat(z)))

26

Patrons(x,Some)

‘Y

Yes

Patrons(x Full) A Fri/Sat(x)

= N

&Y

Yes

27

Each test is a conjunction of literals.
Labels can be “yes” or “no”.
If you allow arbitrarily many lits per tests, then

decision lists can express all Boolean functions

Consequence for PAC learning?
(Can view as “decision tree”; what form?)

28

Limit expressiveness of tests:
involve at most £ literals.

Becomes PAC learnable!

We have to show that we don’t need too many
examples to find a good k-DL(n) hypothesis.
n Boolean attributes.

29

Limit expressiveness of tests:

Language of tests: Conj(n, k)

At most 3191 (mF)l sets of tests (Yes/No/absent).

All possible orders, so:

|k-DL(n)| < 3l€enimRl 1 Conj(n, k)|!

30

After some work, we get
|k-DL(n)| = 90(n* loga(n*))

(useful exercise! try mathematica)
plug in (1), what is the key point here?
What if k£ approaches n?

31

We get

m > 1 (In(3) + O(n* loga(n*)))

So, for fixed k, need only a polynomial number of examples!

Still need polytime learning alg. to generate
a consistent decision list with m examples.

32

Now we need an algorithm that can find a consistent
hypothesis. Use simple greedy algorithm.

33

function DECISION-LIST-LEARNING(examples) returns a decision list, No or failure

if examples 1s empty then return the value No
t « a test that matches a nonempty subset examples, of examples

such that the members of examples, are all positive or all negative
if there 1s no such 7 then return failure
if the examples 1n examples, are positive then o « Yes
else 0 — No
return a decision list with 1mtial test and outcome o

and remaining elements given by DECISION-LIST-LEARNING(examples — examples)

34

100

60

Training set size

40

128 182] UO 1021100 9,

35

Why decision list somewhat worse than decision tree?

Can we actually be sure that our concept can be learned
as a k-DL7

(Note not clear figure is for fixed k.)

36

Learning a conjunction of literals is another
example of a PAC learnable language.

PAC learning is an important advance in learning
theory. Unfortunately, also many negative results.
Practical algorithms somewhat limited.

Limitations? Is it the right model?

37

Examples

1) H space of all Boolean functions.
not PAC learnable; space too big;
need too many examples.

2) Decision lists (with limited test size).

PAC learnable.

3) Conjunction of literals.
PAC learnable.

38

Examples

4) k-term DNF.
T'VIyV ...V T, with each T; conjunction
of literals.
not PAC learnable.

Polynomial sample complexity (small |H|) but intractable
to find consistent hypothesis (most likely).

5) k-CNF is PAC learnable!

39

Some more PAC learnability examples.

40

Learning a conjunction of literals is another

example of a PAC learnable language.
E.g. concept: Old AN —=Tall N\ Rich A ...
We have: |H|=3"

Substitution in (1) gives us:
m > H(n In(3) + In(3))

Example: Learn a conjunction with up to 10 literals.
We desire 95% probability that we find an hypothesis wit

an error of less than 0.1.

How many examples do we need?

41

m = 55(10 In(3) + In(55)) = 140

1
W)
Surpise: Not that many!
Again, the laws of probability...

E.g. in restaurant case we got something with

only 12 examples. Figures with up to 100 examples alread
very good.

42

PAC: Concluding Remarks

Valiant showed:
a.) Machines can provable learn certain classes of concepts.

b.) Classes are nontrivial and of interest from a “knowledge

representation” perspective.

c.) Process takes only a feasible number of steps (and thus
feasible number of examples).
(contrast with previous models)

43

Some issues to consider:

e Impact on the practice of Machine Learning?
(consider decision tree learning / backpropagation etc.)

e Connection to reasoning and acting?
e Place for “background” knowledge?

Note: in PAC, background knowledge only through syntactic
form of concepts.

44

Major Spinoff from PAC: Boosting

45

QuWearnmg algorithm that does only sli
n random guessing, can we make i

Surprising answer: Yes, we can boost its performance

to be almost perfect!

How? (Schapire 1990) — Basic ideas: run many copies of
of the algorithm in a clever way.
Technique is now also popular in practice:
Learn many different decision trees / neural nets / decisiof lis
etc. Let them vote for the answer on an unseen case.
Works well on stockmarket data!
Also called: “combining experts”

46

Concludes PAC learning.

Before going to Neural Netsworks let’s consider

Question 18.1 R&N
Discuss how infant learns to speak and understand a language.

Possibly most powerful example of learning (if it is learning!).

47

Issues

Need to: recognize speech, learn vocabulary,

learn grammar, and learn semantics and pragmatics.

What feedback does child receive?
Enough examples? What kinds of examples?
How many examples sentences?

48

Reinforcement learning based on general well-being?

Possible natural tendency for “mimicry” essential...
Some direct feedback (parents: “shoe”, “table”, etc.)

But adults do not appear to “correct’ child’s speech!
Also, mainly (only?) positive examples.

49

Chomsky (1960’s) “poverty of the stimulus” argument:
basic universal grammar of language must be innate.
(simply not enough examples; also no negative ones.)

Recent advances in learning e.g. on probabilistic
context free grammars re-visits the issue!

Resolution possibly within next 10 years.

50

