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Outline

Constraint Satisfaction Problems (CSP)
Backtracking search for CSPs
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Key issue: So far, we have treated nodes in
search trees as “black boxes,” only looked
inside to check whether the node is a goal state.

In CSPs, we want to “look inside the nodes”
and exploit problem structure during the
search. Sometimes, reasoning or inference
(“propagation techniques’) will

led us find solutions without any search!
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Motivational Example:
8-Queens

Usual goal:
place 8 non-attacking
queens.

Already shown
effectiveness of local
search.
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Generic (DFS/BFS) search

Is this how you would
program this problem?

Node is a (partial) state of the board

Action: “place a queen on board”

Goal test: are there 8 non-attacking queens?

How many placements of 8 queens will be considered?

The DFS/BFS tree will enumerate up to
648 combinations (assume limit depth to 8).

6478 = 2748 = 2.8 x 10" 14
Note redundancy: Q1 in (1,3), Q2in (2,7) ...
vs.Q1in (2,7),Q2in (1,3) ..owsmm 35
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Alternative: Use “factored representation.”
Factoring refers to “splitting things into smaller parts.”

State has internal structure.
1) Here, a seth 8 variables. |
x 1,x 2,. 3.
2) Each w1th domain {1 .8}, the
possible i
3) A'set of constraints:
e.g. no two vars can be assigned
the same value. (Why?)

Each variable gives the position
of a queen in a row.

Number of board states to explore:

“only” 8% = 16.7 x 10”6 combinations.

Set of vars, set of possible values for each vars
& set of constraints defines a CSP.

Bart Selman 6
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Set of vars, set of possible values for each vars & set of constraints
defines a CSP.

A solution to the CSP is an assignment of values to the variables so that
all constraints are satisfied (no “violated constraints.”)

A CSP is inconsistent if no such solution exists.
Eg try to place 9 non-attacking queens on an 8x8 board.

Hmm. Can a search program figure out that you can’t place 101 queens
on 100x100 board?

Not so easy! Most search approaches can’t. Need much more clever
reasoning, instead of just search. (Need to use Pigeon Hole principle.)

Aside: Factored representation does not even allow one to ask

the question. Knowledge is build in.)

Alternative question: With N queens is there a solution with queen
in bottom right hand corner on a N x N board?

Bart Selman
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How do we search for a solution?

Start with empty variable assignment (no vars assigned). Then, build
up partial assignments until all vars assigned.

Action: “assign a variable a value.”

Goal test: “all vars assigned and no constraint violation.”

What is the search space? (n vars, each with d possible values)

Top level branching: n.d —
) Hmm. But “only” n*d distinct value
Next branching: (n-1).d assignments! Different var ordering can lead to
Next branching: (n-2).d the same assignment! Wasteful...
Just “fix” a variable ordering:
Backtrack search.
Bottom level: d Check only n"\d full var-value assignments.

(one var remains to be set)

So, tree with n! d*n leaves.

Bart Selman 8
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Backtrack search

Aside: “legal” and “feasible”
Already assumes a bit of “reasoning.” (Next.)

There are many improvements on intuitive idea...

Bart Selman
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Reasoning, inference or “propagation.”

Message:
CSP propagation techniques can dramatically reduce search.
Sometimes to no search at all! Eg. Sudoku puzzles.

After placing the first queen, what would you do for the 274?

Bart Selman 1 0
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General Search vs.
Constraint satisfaction problems (CSPs)

Standard search problem:

— state is a "black box” — can be accessed only in limited way:
successor function; heuristic function; and goal test.

What is needed for CSP:
Not just a successor function and goal test. Also a means of

propagating the constraints (e.g. imposed by one queen on
the others and an early failure test).

—> Explicit representation of constraints and constraint
manipulation algorithms

—> Constraint Satisfaction Problems (CSP)

Bart Selman 1 1
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Constraint satisfaction problems (CSPs)

States and goal test have a standard representation.
— state 1s defined by variables X; with values from domain D,

— goal test 1s a set of constraints specifying allowable
combinations of values for subsets of variables

Interesting tradeoft:
Example of a (restricted) formal representation language.
Allows useful general-purpose algorithms more powerful than standard search

algorithms that have to resort to problem specific heuristics
to enable solution of large problems.

Bart Selman 1 2
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Constraint Satisfaction Problem

Set of variables {X1, X2, ..., Xn}

Each variable Xi has a domain Di of possible values
Usually Di 1s discrete and finite

Set of constraints {C1, C2, ..., Cp}

Each constraint Ck involves a subset of variables and
specifies the allowable combinations of values of

these variables

Goal:

Assign a value to every variable such
that all constraints are satisfied

Bart Selman
CS4700

13



I1+k=10

Motivational Example:
8-Queens

How do we represent 8-Queens
as a CSP:
I=k=-5" Vvariables?
Constraints?
Note: More than one option.

Bart Selman 1 4
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Example: 8-Queens Problem

Xi — column for queen in row 1
8 variables Xi, i =1 to 8 (one per row)

Domain for each variable {1,2....,8}
Constraints are of the form:

— Xi# Xj when j=1 (1.e. no two in the same column)

— No queens in same diagonal:
DX —X;#i—]
)X, - X;#=j—i
(check that this works!)

Alternative? Boolean vars

st 15



Boolean Encoding
64 variables Xij,i=1to8,j=1to 8

Domain for each variable {0,1} (or {False, True}) X =1 iff “there is a

Constraints are of the form: qu een on location (i,j).”

Row and columns
— If (Xij =1) then (Xik = 0) for all k=1 to 8, k=j (logical constraint)
— Xij=1=> Xkj=0 for allk=1 to 8, k=i
Diagonals
— Xij=1=> Xi+Lj+1=0 1=1to 7, itl <8; j+1<8 (right and up)
— Xij=1=> Xi-LjH=0 1=1to7,i-1=1; j+l<8 (right and down)
— Xij=1=> Xi-Lj1=0 1=1to 7,i-1=1; j-1=1 (left and down)
— Xij=1=> Xi+Lj-1=0 1=1to 7, i+l <8; j-1=1 (left and up)

What’s missing? Need N (= 8) queens on board!

3 options:

1) Maximize sum X ij (optimization formulation)

2) Sum X ij = N (CSP; bit cumbersome in Boolean logic)

3) Foreachrowi: (X ilORX i2ORX i3... X iN)

Bart Selman 1 6
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Logical equivalence

Two sentences p an q are logically equivalent (= or <) iff p <= q is a tautology
(and therefore p and q have the same truth value for all truth assignments)

(aN\fB) = (BANa) commutativity of A
(aV ) = (Va) commutativity of V
((aAB)ANvy) = (A (B A7y)) associativity of A
(aVvpB)Vy) = (aV(BVy)) associativity of V
—(—a) = a double-negation elimination
(. — ) = (=8 — —a) contraposition
(¢ = ) = (maV [3) implication elimination
(@ <= B) = (o = B)AN(f — «)) biconditional elimination
(A fB) = (~aV—8) de Morgan
-(aV pB) = (maA—-f3) de Morgan
(@A (BVY) = ((aAB)V (A7) distributivity of A over V
(@aV(BAY) = ((aVB)A(aVy)) distributivity of V over A

Bart Selman
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Propositional Satisfiability problem

Satifiability (SAT): Given a formula in propositional calculus, 1s there a model

(1.e., a satisfying interpretation, an assignment to its variables) making it true?

We consider clausal form, e.g.:
(av =bv =c)AND (bv = ¢c)AND(av c)

n possible assignments

SAT: prototypical hard combinatorial search and reasoning
problem. Problem is NP-Complete. (Cook 1971)
Surprising “power” of SAT for encoding computational problems.

Bart Selman 1 8
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Significant progress in
Satisfiability Methods

Software and hardware verification — Many Applications:
complete methods are critical - e.g. for Hardware and
verifying the correctness of chip design, using Software Verification
SAT encodings Planning,

Protocol Design,

Scheduling, Materials

Going from 50 variable, 200 constraints .
to 1,000,000 variables and 5,000,000 constraints Discovery etc.

in the last 10 years

Current methods can verify automatically the
correctness of large portions of a chip

19
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Turing Award: Model Checking

2008 Turing Award Winners Announced

Posted by ScuttleMonkey on Monday February 04, @05:30PM
from the nobel-of-computing-awards dept.

The Association for Computing Machinery has announced the 2008 Turing
Award Winners. Edmund M. Clarke, Allen Emerson, and Joseph Sifakis

received the award for their work on an automated method for finding design
errors in computer hardware and software.

“Model Checking is a type of "formal verification” that analyzes the logic
underlying a design, much as a mathematician uses a proof to determine that
a theorem is correct. Far from hit or miss, Model Checking considers every possible state
of a hardware or software design and determines if it is consistent with the designer's
specifications. Clarke and Emerson originated the idea of Model Checking at Harvard in
1981. They developed a theoretical technique for determining whether an abstract model of
a hardware or software design satisfies a formal specification, given as a formula in
Tempaoral Logic, a notation for describing possible sequences of events. Mareover, when
the system fails the specification, it could identify a counterexample to show the source of

the problem. Numerous model checking systems have been implemented, such as Spin at
Bell Labs."

Source: Slashdot B 20



A “real world” example

From “SATLIE”:

http:/ /www.satlib.org/benchm.html

SAT-encoded bounded model checking instances
(contributed by Ofer Shtrichman)

In Bounded Model Checking (BMC) [BCCZ89],
a rather newly introduced problem in formal
methods, the task is to check whether a given
el M {typically a hard jesign} satist:
temporal property P in all paths with length less
or equal to some bound k. The BMC problem
can be efficiently reduced to a propositional
satisfiability problem, and in fact if the property
is in the form of an invariant {Invariants are the
most common type of properties, and many other
temporal properties can be reduced to their form.
It has the form of 'it is always true that ... '},
it has a structure which & similar to many Al
planning problems. t Selman 21
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Bounded Model Checking instance:

The instance bme—-ibm-6.cenf, IBM LSU 1997:

p onf 51639 368352
—-170

—-160 Le. ((not x;) or x;)

—150
_1-40 and ((not x,) or x;)

130 and ... etc.
—120
—1-80
—9150
—90140
—9130
—9-120
—9110
9100
—9—-160
—17 23 0
—17 22 0

Bart Selman 2 2
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- Dimacs Format for CNF
ile format

The benchmark file format will be in a simplified version of the DIMACS format: ¢
c start with comments
C
C
penf53
1-540
-15340
-3-40
The file can start with comments, that is lines begining with the character c.
Right after the comments, there is the line p cnf nbvar nbclauses indicating that the
instance is in CNF format; nbvar is the exact number of variables appearing in the
file; nbclauses is the exact number of clauses contained in the file.

Then the clauses follow. Each clause is a sequence of distinct non-null numbers
between -nbvar and nbvar ending with 0 on the same line; it cannot contain the
opposite literals 1 and -1 simultaneously. Positive numbers denote the corresponding
variables. Negative numbers denote the negations of the corresponding variables.

Bart Selman 2 3
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Example of Sat Solver

SAT Solver : Lingeling

Nqueen4-vl.cnf

Nquuens4-v2.cnf

Bart Selman 2 4
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pcnf 16 84

12340
10 15913 0 160
130 } g 8 1-11 0
o -1 - 1-16 0

'1 '13 O _6 _11 O
230 5-90 6-16 0
2.4 0 5-13 0

11-16 0

3-40 596_1130 104 0 270
56780 260 B 1 2 4
S0 260 7-12 0 3

-2 - 380
570 2-14 0 5.10 0 5 6 7 8
580 -6-10 0 5-15 0
6-7 0 '?0'1‘1‘400 10-15 0 9O 10 1112
M -10 - 9-14
6-80 3711150 _3_700 13 14 15 16
780 370 4.10 0
9101112 0 3-11 0 413 0
29-10 0 -3-150 27-10 0
9-11 0 -7-11°0 7-13 0
9.12 0 715 0 -10-13 0

11-15 0 360
-10-11.0 481216 0 3.9 0
10-12 0 480 6.9 0
11-12 0 4-12 0

250

13141516 0 ‘;“ig 8 8-11 0
1314 0 216 0 8-14 0

-8 - 11-14 0
13-15°0 -12-16 0 12415 0
13-16 0
14-15 0
14-16 0

-15-16 0 Baétsi‘;l(r)r(l)an 25



Source: IBM

How Large are the Problems?

A bounded model checking problem:

From “SATLIB":

http://www.satlib.org/benchm.himl

SAT-encoded bounded model checking instances
(contributed by Ofer Shtrichman)

In Bounded Model Checking (BMC) [BCCZ99],
a rather newly introduced problem in formal
methods, the task is to check whether a given
model M (typically a hardware design) satisfies a
temporal property P in all paths with length less
or equal to some bound k. The BMC problem
can be efficiently reduced to a propositional
satisfiability problem, and in fact if the property
is in the form of an invariant (Invariants are the
most common type of properties, and many other
temporal properties can be reduced to their form.
It has the form of 'it is always true that ... '},
it has a structure which is similar to many Al
planning problems.

26
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SAT Encoding

(automatically generated from problem specification)

The instance bmc-ibm-6.cnf, IBM LSU 1997:

p cnf 51639 368352
—170

—150
—1—-40
—130
—120
—1-380
—0150
—0140
—0130
—9-120
—0110
—0100
—9-160
—17 23 0
—17 22 0

l.e., ((notx,) orx5)
((not x4) or Xg)
etc.

X4, X5, X3, €tc. are our Boolean variables
(to be set to True or False)

Should x, be set to False??

27 Bart Selman
CS4700
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10 Pages Later:

18590

18510

177 169 161 153 145 137 129 121 113 105 97
89 81 73 65 57 49 41

332517911850

136 —187 0

186 188 0 \

i.e., (X477 OF X469 OF X451 OF X553 ..
X33 OF X,5 OF X47 OF Xq OF X, OF (nOt X,355))

clauses / constraints are getting more interesting...

Note x, ...

L



4,000 Pages Later:

10236 —10050 0

10236 —10051 0

10236 —10235 0

10008 10009 10010 10011 10012 10013 10014
10015 10016 10017 10018 10019 10020 10021
10022 10023 10024 10025 10026 10027 10023
10029 10030 10031 10032 10033 10034 10035
10036 10037 10086 10037 10083 10089 10090
10091 10092 10093 10094 10095 10096 10097
10098 10099 10100 10101 10102 10103 10104
10105 10106 10107 10108 —55 —54 53 —52 —51 50
10047 10048 10049 10050 10051 10235 —10236 0
10237 —10008 0

10237 —10009 0

10237 —10010 0

2 e 9



Finally, 15,000 Pages Later:

—7 2600

7 —260 0

1072 1070 0

—15 —14 —-13 —-12 -11 —-100
—15-14 -13-12-1110 0
—15 —-14 —-13 1211 —-10 0
—15—-14 -13 -121110 0
—7—-6-5—-4-3-20
—7—-6-5—-4-320
—7—6-5-43-20
—7—6-5-4320

185 0

Search space of truth assignments: 2°®°° = 3.160699437 - 10"*%

Current SAT solvers solve this instance in
under 10 seconds!

0 B 3()



Example of a Boolean Satisfiability (SAT) encoding.
Very “simple” but effective representation.

Example of a logical knowledge representation language.

For propositional logic, see R&N 7.4.1 & 7.4.2.

Bart Selman
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Which encoding is better? Allows for faster solutions?

One would think, fewer variables is better...

Search spaces:

88=1.6x10% vs 2%4=1.8x10"

However, in practice SAT encodings can be surprisingly
effective, even with millions of Boolean variables. Often,

few true local minima in search space.

Demo of backtrack search and local search on Boolean
encoding of N-queens.

Bart Selman 3
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N-Queens

The standard N by N Queen's problem asks how to place N
queens on an ordinary chess board so that they don’ t
attack each other

O = N W |l O O N

Is this problem

7
NP-Complete?

Bart sciman 3 3
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N-Queens
N=8 (another solution)

O =1 N W[ I~ 01| O| N

3 4 Bart Selman 3 4
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N=6u;

N=6a+1;

N =6 a £ 2; (not N=4;)
N =6 a + 3; (not N=9;)
N=6 a - 2; (inc. N=4)
N=12 a - 3; (inc. N=9)

Linear congruence equations

35
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0 ‘(\'1;_4 .

- 1 W
N-Queens y e
N=8 3 Y

4 b4
N = 60 2, a=1 54
6 Y
S(8) = {3}. ! Y7
0 1 2 3 4 5 6 7

For all ¢ € S(8), the linear congruence equations
Let’ s consider ¢=3.

6 x +y =3 (mod 8),
where x =0, 1, 2, 3.
x=0y=3;x=ly=5;x=2y=7x=3y=1;

6 x +y=6(mod 8),
where x = 4,5,6,7,8
X=4,y=6;x=5y=0;x=6y=2; x=7 y=4;

3 6 Bart Selman 3 6
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Y

4
514
6

Partially Filled Nqueens

So the N-queens problem 1s easy when we start with an empty
board.

What about if we pre-assign some quuens and ask for a
completion?

Open question

Conjecture: completing a partially filled N-
queens board 1s NP-complete.

Bart Selman 3
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Example: Crypt-arithmetic Puzzle

Variables: S, E,N,D,M,O, R, Y

Domains:
[0..9] forS,M,E,N,D,O,R,Y

Search space: 1,814,400
Aside: could have [1..9] for S and M

Soln.:
9567

1085

10652

Bart Selman
CS4700
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_ Constraints
Option 1:

C1a) 1000S+100E+10N+D +
1000M+1000+10 R+ E

= 10000 M + 1000 0 + 100 N+ 10 E +Y SEND
Or use 5 equality constraints, using auxiliary +MORE
“carry” variables C1, ...,C4€]J[0...9]
Option 2: C1b) MONEY
D+E =10C1+Y Which constraint set better
C1+N+R=10C2+E for solving? Cla or C1b? Why?

C2+E+0O0=10C3+N
C3+S+M=10C4+0 Clb, more “factored”. Smaller

C4 =M pieces. Gives more propagation!

Need two more sets of constraints:

C2) S==0,M=/=0
C3) S==M,S==0,...E=~=Y (28 not equal constraints)

Note: need to assert everything!
Alt. “All_diff(S,M,0.,...Y)” for C3.

Bart Selman 3 9
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Some Reflection:
Reasoning/Inference vs. Search

How do human solve this? S E N D
What is the first step? + M O R E
= M O N E Y

1) M =1, because
the carry over of the addition of two
digits (plus previous carry) is at most 1

Actually, a somewhat subtle
piece of mathematical background

Also, what made us focus knowledge.
on M?
Experience / intuition ...

Bart Selman
CS4700
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E N D
+ M O R E
1) M =1, because M =/=0 and ... = M O N E Y

the carry over of the addition of two
digits (plus previous carry) is at most 1.

2) O = 0. Because M=1 and we have to have a carry to the next
column. S +1 + C3 is either 10 or 11. So, O equals 0 or 1.

1 is taken. So, O = 0.

3) S=9. There cannot be a carry to the 4" column (if
there were, N would also have to be 0 or 1. Already

taken.). So, S = 9.

A collection of “small pieces” of local reasoning,
using basic constraints from the rules of arithmetic.
A logic (SAT) based encoding will likely “get these steps.”

msme 4]



And further it goes...

4. If there were no carry in column 3 then E = N, which is impossible. Therefore there is a carry and
N=E +1.

5. If there were no carry in column 2,then (N+R)mod10=E,andN=E+1,s0(E+1+R)
mod 10 = E which means (1 + R) mod 10 =0, so R=9. But S =9, so there must be a carry in
column 2so R=8.

6. To produce a carry in column 2, we musthave D + E=10 + Y.

7. Yisatleast2soD + E is at least 12.
. no pairs of available numbers that sum to at least 12 are (5,7) and (6,7) @

) + 1, Ecan'tbe 7 becausethenN=8=RsoD=7.
10. E can'tbe 6 becausethenN=7=DsoE=5and N =6.
11. D+E=12s0Y=2.

Largely, a clever chain of reasoning / inference /
propagation steps (no search) except for...
exploring 2 remaining options (i.e., search) to

find complete solution.
e 42



Human problem solving nicely captures key idea behind how to solve
CSPs: replace as much of search by propagation (inference/reasoning).

One difficulty: Humans often use subtle background knowledge.
Can search be completely avoided?

A.: Most likely NO. General cryptarithmetic is NP-complete
(Eppstein 1987)

Bart Selman 3
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Example: Map-Coloring

Northern
Territory
Western

Australia

Queensland

South
Australia

Variables WA, NT, O, NSW, V, SA, T
Domains D, = {red,green,blue}

Constraints: adjacent regions must have different colors

e.g., WA #NT, or (WA,NT) in {(red,green),(red,blue),(green,red), (green,blue),

(blue,red),(blue,green)}

New South Wales

Victoria

Tasmania

Bart Selman
CS4700
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Example: Map-Coloring

Sd

| gbs

Tasm'ia

Solutions are complete and consistent assignments, e.g., WA =red, NT = green,
Q =red,NSW = green,V =red,SA = blue,T = green

(Aside: Four colors suffice. (Appel and Haken 1977)

s 45



Constraint graph:
Graph Coloring

Binary CSP: each constraint relates two variables

Constraint graph: nodes are variables, arcs are constraints

Two variables are adjacent or neighbors if they
are connected by an edge or an arc

Bart Selman 4 6
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Application of Graph Coloring

Lots of applications involving scheduling and assignments.

Scheduling of final exams — nodes represent finals, edges between finals
denote that both finals have common students (and therefore they have to
have different colors, or different periods).

Time Period = courses

1
Ne—— I (red) =2 1,6
II (blue)—>2

w IV (black)~>

5 4 4

Bart Selman
Graph of finals for 7 courses CS4700 47




Varieties of CSPs

Discrete variables

— finite domains: our focus
 n variables, domain size d 2 O(d") complete assignments

(includes Boolean satisfiability 1%t problem to be shown NP-complete.)

— infinite domains:
* integers, strings, etc.
* e.g., job scheduling, variables are start/end days for each job
* need a constraint language, e.g., StartJob, + 5 < StartJob,

Continuous variables
— e.g., start/end times for Hubble Space Telescope observations

— linear constraints solvable in polynomial time by linear
programming

Bart Selman 4 8
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Varieties of constraints

Unary constraints involve a single variable,
— e.g., SA # green

Binary constraints involve pairs of variables,
— e.g., SA # WA

Higher-order constraints involve 3 or more variables,

— e.g., cryptarithmetic column constraints

Bart Selman 4 9
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CSP as a Search Problem

Initial state: empty assignment

Successor function: a value 1s assigned to any unassigned
variable, which does not conflict with the currently
assigned variables

Goal test: the assignment 1s complete

Path cost: irrelevant

Bart Selman 5 0
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Remark

Finite CSP include 3SAT as a special case (under logical reasoning).
3SAT 1s known to be NP-complete.

So, 1n the worst-case, we cannot expect to solve a finite CSP 1n less
than exponential time.

me 51



Solving CSP by search : Backtrack Search

BFS vs. DFS
— BFS - not a good idea.
e A tree with n!d" leaves : (nd)*((n-1)d)*((n-2)d)*...*(1d) = n!d"
* Reduction by commutativity of CSP
— A solution is not in the permutations but in combinations.
— A tree with d" leaves
— DFS
e Used popularly

— Every solution must be a complete assignment and therefore
appears at depth n if there are n variables

— The search tree extends only to depth n.
* A variant of DFS: Backtrack search
— Chooses values for one variable at a time
— Backtracks when failed even before reaching a leaf.
* Better than BFS due to backtracking but still need more
“cleverness” (reasoning/propagation).

fesint 92



Backtrack search

Variable assignments are commutative}, i.e.,
[WA =red then NT = green] same as [ NT = green then WA =red |

Only need to consider assignments to a single variable at each node
> b =d and there are d" leaves

Depth-first search for CSPs with single-variable assignments is called
backtrack search

Backtracking search is the basic uninformed algorithm for CSPs

Can solve n-queens for n = 30

Bart Selman 5 3
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- Backtrack Search

empty assignment

1st variable

2nd yvariable

3rd variable

Assignment = {}

e 54



- Backtrack Search

empty assignment

1st variable

2nd yvariable

3rd variable

Assignment = {(varl=v1l)}

e 55



- Backtrack Search

empty assignment

1st variable

2nd yvariable

3rd variable

Assignment = {(varl=v11),(var2=v21)}

Bart Selman 5 6
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empty assignment

1st variable

2nd yvariable

3rd variable

- Backtrack Search

Assignment = {(varl=v11),(var2=v21),(var3=v31)}

Bart Selman
CS4700
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empty assignment

1st variable

2nd yvariable

3rd variable

- Backtrack Search

Assignment = {(varl=v11),(var2=v21),(var3=v32)}

Bart Selman
CS4700
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- Backtrack Search

empty assignment

1st variable

2nd yvariable

3rd variable

Assignment = {(varl=v11),(var2=v22)}

Bart Selman 5 9
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empty assignment

1st variable

2nd yvariable

3rd variable

- Backtrack Search

Assignment = {(varl=v11),(var2=v22),(var3=v31)}
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Solving CSP by search : Backtrack Search

function BACKTRACKING-SEARCH (csp) returns a solution, or failure
return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns a solution, or failure
if assignment 1s complete then return assignment
var < SELECT-UNASSIGNED-VARIABLE(VARIABLES|[csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment according to CONSTRAINTS[csp] then
add {var=value} to assignment
result € RECURSIVE-BACKTRACKING(assignment, csp)
if result '= failure then return result
remove {var = value} from assignment ~ BACKTRACKING OCCURS HERE!
return failure

)
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Improving Backtracking Efficiency

Variable & value ordering to increase

Which variable should be assigned next? the likelihood to success
= Minimum Remaining Values heuristic

In what order should its values be tried?
= Least Constraining Values heuristic

Can we detect inevitable failure early?
= Forward checking @
= Constraint propagation (Arc Consistency)

When a path fails, can the search avoid repeati SA

NSW

ng this failure?
g Early failure-detection to decrease

= _Backjumping the likelihood to fail
Can we take advantage of problem structure? :
Tree-structured CSP /’ Restructuring to reduce the
8 problem’s complexity

General purpose techniques



Improving backtracking efficiency

function BACKTRACKING-SEARCH (csp) returns a solution, or failure
return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns a solution, or failure
if assignment is complete then return assignment
var € SELECT-UNASSIGNED-VARIABLE(VARIABLES|[csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value 1s consistent with assignment according to CONSTRAINTS[csp] then
add {var=value} to assignment
result € RECURSIVE-BACKTRACKING(assignment, csp)
if result '= failure then return result
remove {var = value} from assignment
return failure

>



Choice of Variable

#1: Minimum Remaining Values (aka Most-constrained-variable
heuristic):

Select a variable with the fewest remaining values

ST ST SChe LS

Bart Selman 6
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Choice of Variable, cont.

Tie-breaker among most constrained variables
#2 Most constraining variable:

— choose the variable with the most constraints on remaining
variables

R R R

Bart Selman 6 5
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Choice of Value:

Least constraining value

#3 Given a variable, choose the least constraining value:

— the one that rules out the fewest values in the remaining
variables

L

SR

‘ % Allows 1 value for SA
‘1 ? Allows 0 values for SA

Bart Selman 6 6
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Constraint Propagation

The process of determining how the possible values of one
variable affect the possible values of other variables

Bart Selman 6
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Forward Checking

After a variable X is assigned a value v, look at each unassigned
variable Y that is connected to X by a constraint and deletes
from Y’ s domain any value that is inconsistent with v

Terminate branch when any variable has no
legal values & backtrack.

Bart Selman 6 8
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WA
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NT

NSW

Forward checking

SA
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Constraint propagation

Forward checking propagates information from assigned to unassigned
variables, but doesn't provide early detection for all failures:

N
WA‘S—;{L

W

What’s the problem here?

w_"\_Lr;_"‘_l%

WA NT Q NSW V' SA T

(M) m mEoE] (mEi R

NT and SA cannot both be blue!

Use: constraint propagation repeatedly to enforce constraints locally.

Bart Selman 3
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Definition (Arc consistency)

A constraint C_xy is said to be arc consistent w.r.t. x iff
for each value v of x there is an allowed value of y.

Similarly, we define that C_xy is arc consistent w.r.t. y.

A binary CSP is arc consistent iff every constraint C_xy is arc
consistent wrt x as well as wrty.

74



When a CSP 1s not arc consistent, we can make it arc
consistent.

This is also called “enforcing arc consistency .

Bart Selman
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Example

Let domains be
D x={1,2,3},D y={3,4,5, 6}
One constraint
C xy={1,3), (1,5), (3,3), (3,6)} [“allowed value pairs”]

C _xy is not arc consistent w.r.t. x, neither w.r.t. y. Why?

To enforce arc consistency, we filter the domains,
removing inconsistent values.

D’ _x={1,3},D"_y={3,5, 6}

Bart Selman 6
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Arc consistency

Simplest form of propagation makes each arc consistent. NT
Le., X 2 Y is consistent iff WA Q
for every value x of X there is some allowed y SA
SW
A%

S SRS S~

WA NT Q NSW v SA T
L Hf|E EENE EENE
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If X loses a value, neighbors of X need to be rechecked.
Arc consistency detects failure earlier than forward checking.

Can be run as a preprocessor or after each assignment.
(takes polytime each time)

o448

WA NT Q

Empty domain detected! Backtrack early.

Bart Selman 8 O
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Arc consistency algorithm AC-3

function AC-3( csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X, X», ..., X,}
local variables: gueue, a queue of arcs, initially all the arcs in ¢sp [f Xi’ s donlain

while gueue is not empty do is filtered all the donstraints
(X;, X;) 4 REMOVE-FIRST(queue) associated withj it and
if RM-INCONSISTENT-VALUES(X;, X;) then other variables are addgd to the queu

for each X in NEIGHBORS[X;] do
add (X, X;) to queue

function RM-INCONSISTENT-VALUES( X;, X;) returns true iff remove a value
Binary removed < false
constraint for each zin DoMAIN[X;] do
Xi, Xj | if no value y in DOMAIN[X] allows (z,y) to satisfy constraint(.X;, X;)
then delete z from DOMAIN[X;]; removed  true
return removed

n’= number of constraints (edges; n is the # of variables)
d = number of values per variable

Time complexity: REMOVE-ARC-INCONSISTENCY takes O(d?) time

Each variable is inserted in Queue up to d times, since at
most d values can be deleted

- AC3 takes O(n%d?) time to run



Beyond Arc Consistency

{1, 2} {1, 2}

X=Y

Is this network arc consistent?

What is the solution? X =27 Y2

Clearly arc consistency is not enough
to guarantee global consistency. {1, 2}
There are other forms of consistency,

such as k-consistency.

But when k = n (num vars), we are
looking at the original problem!



k - Consistency
.2y y.y 1.2}

A graph is K-consistent iff the following is true:
X=Z
Choose values of any K-1 variables that satisfy all
the constraints among these variables and choose
any K th variable. Then, there exists a value for this
K th variable that satisfies all the constraints {1 2}
among these K variables. !

A graph is strongly K-consistent if it is J-consistsent
for all J<=K.

What type of consistency would we need here to solve any constraint
problem without search?

K=N

Bart Selman 8 3
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Consistency

Node consistency = strong 1- consistency
Arc consistency = strong 2- consistency
(note: arc-consistency is usually
assumed to include node-consistency as well).
See R&N sect. 6.2.3 for “path-consistency” = 3-consistency for binary CSPs.

Algorithms exist for making a constraint graph strongly K-consistent for K>2
but in practice they are rarely used because of efficiency issues.

Other consistency notions involve “global constraints,” spanning many
variables. E.g. AIIDiff constraint can handle Pigeon Hole principle.

Bart Selman 8
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Summary: Solving a CSP

Search:

— can find solutions, but may examine many non-solutions
along the way

Constraint Propagation:
— can rule out non-solutions, but but may not lead
to full solution.
Interweave constraint propagation and search
— Perform constraint propagation at each search step.

— Goal: Find the right balance between search
(backtracking) and propagation (reasoning).

Surprising efficiency (last 10 yrs):
100K + up to one million variable CSP problems
are now solvable!

See also local search. R&N 6.4
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