
Bart Selman
CS4700 1

CS 4700:
Foundations of Artificial Intelligence

Bart Selman
selman@cs.cornell.edu

Module:

Constraint Satisfaction

Chapter 6, R&N
 (Completes part II – Problem Solving)

Bart Selman
CS4700 2

Outline

Constraint Satisfaction Problems (CSP)
Backtracking search for CSPs

Bart Selman
CS4700 3

Key issue: So far, we have treated nodes in
 search trees as “black boxes,” only looked
 inside to check whether the node is a goal state.

 In CSPs, we want to “look inside the nodes”
 and exploit problem structure during the
 search. Sometimes, reasoning or inference
 (“propagation techniques”) will
 led us find solutions without any search!

Bart Selman
CS4700 4

Motivational Example:
8-Queens

Usual goal:
 place 8 non-attacking

queens.

Already shown
effectiveness of local
search.

Bart Selman
CS4700 5

Generic (DFS/BFS) search

Node is a (partial) state of the board
Action: “place a queen on board”
Goal test: are there 8 non-attacking queens?
How many placements of 8 queens will be considered?

The DFS/BFS tree will enumerate up to
 648 combinations (assume limit depth to 8).

64^8 = 2^48 = 2.8 x 10^14
Note redundancy: Q1 in (1,3), Q2 in (2,7) …
 vs. Q1 in (2,7), Q2 in (1,3) …

Is this how you would
program this problem?

Bart Selman
CS4700 6

Alternative: Use “factored representation.”
Factoring refers to “splitting things into smaller parts.”

Number of board states to explore:
“only” 88 = 16.7 x 10^6 combinations.

State has internal structure.
1) Here, a set of 8 variables.
x_1, x_2, … x_8.
2) Each with domain {1,…8}, the
possible variable values.
3) A set of constraints:
 e.g. no two vars can be assigned
 the same value. (Why?)
Each variable gives the position
of a queen in a row.

Set of vars, set of possible values for each vars
& set of constraints defines a CSP.

Bart Selman
CS4700 7

Set of vars, set of possible values for each vars & set of constraints
defines a CSP.

A solution to the CSP is an assignment of values to the variables so that

all constraints are satisfied (no “violated constraints.”)

A CSP is inconsistent if no such solution exists.
 Eg try to place 9 non-attacking queens on an 8x8 board.

Hmm. Can a search program figure out that you can’t place 101 queens

on 100x100 board?
Not so easy! Most search approaches can’t. Need much more clever

reasoning, instead of just search. (Need to use Pigeon Hole principle.)
 Aside: Factored representation does not even allow one to ask
 the question. Knowledge is build in.)
 Alternative question: With N queens is there a solution with queen
 in bottom right hand corner on a N x N board?

Bart Selman
CS4700 8

How do we search for a solution?
Start with empty variable assignment (no vars assigned). Then, build

up partial assignments until all vars assigned.

Action: “assign a variable a value.”
Goal test: “all vars assigned and no constraint violation.”

What is the search space? (n vars, each with d possible values)

Top level branching: n . d
Next branching: (n-1) . d
Next branching: (n-2) . d
…
Bottom level: d
 (one var remains to be set)

So, tree with n! d^n leaves.

Hmm. But “only” n^d distinct value
assignments! Different var ordering can lead to
the same assignment! Wasteful…
Just “fix” a variable ordering:
 Backtrack search.
Check only n^d full var-value assignments.

Bart Selman
CS4700 9

Backtrack search

Intuitive:
1)  Fix some ordering on the variables. Eg x1, x2, x3 …
2)  Fix some ordering on possible values. Eg 1, 2, 3, …
3)  Assign first variable, first (legal) value.
4)  Assign next variable, its first (legal) value.
5)  Etc.
6)  Until no remaining (feasible) value exist for variable x_i,
 backtrack to previous var setting of x_(i-1), try next possible
 setting. If none exists, move back another level. Etc.
Visually, very intuitive on the N-Queens board (“the obvious strategy”).
See figure 6.5 book. Recursive implementation. Practice: Iterative with stack.

Aside: “legal” and “feasible”
Already assumes a bit of “reasoning.” (Next.)

There are many improvements on intuitive idea…

Bart Selman
CS4700 10

Reasoning, inference or “propagation.”

After placing the first queen, what would you do for the 2nd?

Message:
CSP propagation techniques can dramatically reduce search.
Sometimes to no search at all! Eg. Sudoku puzzles.

Bart Selman
CS4700 11

General Search vs.
Constraint satisfaction problems (CSPs)

Standard search problem:
–  state is a "black box“ – can be accessed only in limited way:
 successor function; heuristic function; and goal test.

What is needed for CSP:
Not just a successor function and goal test. Also a means of
propagating the constraints (e.g. imposed by one queen on
the others and an early failure test).

à Explicit representation of constraints and constraint

manipulation algorithms
à Constraint Satisfaction Problems (CSP)

Bart Selman
CS4700 12

Constraint satisfaction problems (CSPs)

States and goal test have a standard representation.

–  state is defined by variables Xi with values from domain Di

–  goal test is a set of constraints specifying allowable
 combinations of values for subsets of variables

 Interesting tradeoff:

Example of a (restricted) formal representation language.

Allows useful general-purpose algorithms more powerful than standard search

algorithms that have to resort to problem specific heuristics
 to enable solution of large problems.

Bart Selman
CS4700 13

Constraint Satisfaction Problem

Set of variables {X1, X2, …, Xn}
Each variable Xi has a domain Di of possible values
Usually Di is discrete and finite
Set of constraints {C1, C2, …, Cp}
Each constraint Ck involves a subset of variables and

specifies the allowable combinations of values of
these variables

 Goal:

Assign a value to every variable such
that all constraints are satisfied

Bart Selman
CS4700 14

Motivational Example:
8-Queens

How do we represent 8-Queens
as a CSP:
Variables?

Constraints?
Note: More than one option.

l = 1

l = 2
l = 3

…

k = 1
k = 2

k = 3
…

l – k = 1

l – k= -5

l + k = 10

l – k =0

Bart Selman
CS4700 15

Example: 8-Queens Problem

 8 variables Xi, i = 1 to 8 (one per row)
 Domain for each variable {1,2,…,8}
 Constraints are of the form:

– Xi ≠ Xj when j≠i (i.e. no two in the same column)
–  No queens in same diagonal:

1) Xi – Xj ≠ i – j

2) Xi – Xj ≠ j – i
(check that this works!)

Alternative? Boolean vars

Xi – column for queen in row i

Bart Selman
CS4700 16

Boolean Encoding
 64 variables Xij, i = 1 to 8, j = 1 to 8
 Domain for each variable {0,1} (or {False, True})
 Constraints are of the form:
Row and columns

–  If (Xij = 1) then (Xik = 0) for all k = 1 to 8, k≠j (logical constraint)
–  Xij = 1 è Xkj = 0 for all k = 1 to 8, k≠i

Diagonals
–  Xij = 1 è Xi+l,j+l = 0 l = 1 to 7, i+l ≤8; j+l≤8 (right and up)
–  Xij = 1 è Xi-l,j+l = 0 l = 1 to 7, i-l ≥1; j+l≤8 (right and down)
–  Xij = 1 è Xi-l,j-l = 0 l = 1 to 7, i-l ≥1; j-l≥1 (left and down)
–  Xij = 1 è Xi+l,j-l = 0 l = 1 to 7, i+l ≤8; j-l≥1 (left and up)

3 options:
1) Maximize sum X_ij (optimization formulation)
2) Sum X_ij = N (CSP; bit cumbersome in Boolean logic)
3) For each row i: (X_i1 OR X_i2 OR X_i3 … X_iN)

Xij = 1 iff “there is a
queen on location (i,j).”

What’s missing? Need N (= 8) queens on board!

Bart Selman
CS4700 17

Logical equivalence

Two sentences p an q are logically equivalent (≡ or ⇔) iff p ↔ q is a tautology
(and therefore p and q have the same truth value for all truth assignments)

→ →
→

→ → ↔

Bart Selman
CS4700 18

Propositional Satisfiability problem

Satifiability (SAT): Given a formula in propositional calculus, is there a model
(i.e., a satisfying interpretation, an assignment to its variables) making it true?

We consider clausal form, e.g.:

 (a ∨ ¬b ∨ ¬ c) AND (b ∨ ¬ c) AND (a ∨ c)

n
2 possible assignments

SAT: prototypical hard combinatorial search and reasoning
problem. Problem is NP-Complete. (Cook 1971)

Surprising “power” of SAT for encoding computational problems.

Bart Selman
CS4700 19 19

Significant progress in
Satisfiability Methods

 Software and hardware verification –
complete methods are critical - e.g. for
verifying the correctness of chip design, using
SAT encodings

Current methods can verify automatically the
correctness of large portions of a chip

 Going from 50 variable, 200 constraints
 to 1,000,000 variables and 5,000,000 constraints
 in the last 10 years

Many Applications:
 Hardware and

Software Verification
Planning,

Protocol Design,
Scheduling, Materials

Discovery etc.

Bart Selman
CS4700 20

Turing Award: Model Checking

Source: Slashdot

Bart Selman
CS4700 21 21

A “real world” example

Bart Selman
CS4700 22

i.e. ((not x1) or x7)
 and ((not x1) or x6)

and … etc.

Bounded Model Checking instance:

Bart Selman
CS4700 23

Dimacs Format for CNF File format
The benchmark file format will be in a simplified version of the DIMACS format: c

c start with comments
c
c
p cnf 5 3
1 -5 4 0
-1 5 3 4 0
-3 -4 0
The file can start with comments, that is lines begining with the character c.

Right after the comments, there is the line p cnf nbvar nbclauses indicating that the
instance is in CNF format; nbvar is the exact number of variables appearing in the
file; nbclauses is the exact number of clauses contained in the file.

Then the clauses follow. Each clause is a sequence of distinct non-null numbers
between -nbvar and nbvar ending with 0 on the same line; it cannot contain the
opposite literals i and -i simultaneously. Positive numbers denote the corresponding
variables. Negative numbers denote the negations of the corresponding variables.

Bart Selman
CS4700 24

Example of Sat Solver

SAT Solver : Lingeling

http://fmv.jku.at/lingeling/

Nqueen4-v1.cnf

Nquuens4-v2.cnf

Bart Selman
CS4700 25

p cnf 16 84
1 2 3 4 0
-1 -2 0
-1 -3 0
-1 -4 0
-2 -3 0
-2 -4 0
-3 -4 0
5 6 7 8 0
-5 -6 0
-5 -7 0
-5 -8 0
-6 -7 0
-6 -8 0
-7 -8 0
9 10 11 12 0
-9 -10 0
-9 -11 0
-9 -12 0
-10 -11 0
-10 -12 0
-11 -12 0
13 14 15 16 0
-13 -14 0
-13 -15 0
-13 -16 0
-14 -15 0
-14 -16 0
-15 -16 0

1 5 9 13 0
-1 -5 0
-1 -9 0
-1 -13 0
-5 -9 0
-5 -13 0
-9 -13 0
2 6 10 14 0
-2 -6 0
-2 -10 0
-2 -14 0
-6 -10 0
-6 -14 0
-10 -14 0
3 7 11 15 0
-3 -7 0
-3 -11 0
-3 -15 0
-7 -11 0
-7 -15 0
-11 -15 0
4 8 12 16 0
-4 -8 0
-4 -12 0
-4 -16 0
-8 -12 0
-8 -16 0
-12 -16 0

-1 -6 0
-1 -11 0
-1 -16 0
-6 -11 0
-6 -16 0
-11 -16 0
-2 -7 0
-2 -12 0
-7 -12 0
-3 -8 0
-5 -10 0
-5 -15 0
-10 -15 0
-9 -14 0
-4 -7 0
-4 -10 0
-4 -13 0
-7 -10 0
-7 -13 0
-10 -13 0
-3 -6 0
-3 -9 0
-6 -9 0
-2 -5 0
-8 -11 0
-8 -14 0
-11 -14 0
-12 -15 0

1  2 3 4
5  6 7 8
9  10 11 12
13 14 15 16

Bart Selman
CS4700 26 26

How Large are the Problems?
A bounded model checking problem:

Source: IBM

Bart Selman
CS4700 27 27

i.e., ((not x1) or x7)
 ((not x1) or x6)
 etc.

x1, x2, x3, etc. are our Boolean variables
(to be set to True or False)

Should x1 be set to False??

SAT Encoding

(automatically generated from problem specification)

Bart Selman
CS4700 28 28

i.e., (x177 or x169 or x161 or x153 …
x33 or x25 or x17 or x9 or x1 or (not x185))

clauses / constraints are getting more interesting…

…

Note x1 …

10 Pages Later:

Bart Selman
CS4700 29 29

…

4,000 Pages Later:

Bart Selman
CS4700 30 30

Current SAT solvers solve this instance in
under 10 seconds!

Search space of truth assignments:

Finally, 15,000 Pages Later:

Bart Selman
CS4700 31

Example of a Boolean Satisfiability (SAT) encoding.
Very “simple” but effective representation.
Example of a logical knowledge representation language.

For propositional logic, see R&N 7.4.1 & 7.4.2.

Bart Selman
CS4700 32

Which encoding is better?Allows for faster solutions?

One would think, fewer variables is better…

Search spaces:

88 = 1.6 x 106 vs 264 = 1.8 x 1019

However, in practice SAT encodings can be surprisingly
effective, even with millions of Boolean variables. Often,
few true local minima in search space.

Demo of backtrack search and local search on Boolean
encoding of N-queens.

Bart Selman
CS4700 33 33

N-Queens

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7

The standard N by N Queen's problem asks how to place N
queens on an ordinary chess board so that they don’t

attack each other

N=8

Is this problem
NP-Complete?

Bart Selman
CS4700 34 34

N-Queens
N=8 (another solution)

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7

Bart Selman
CS4700 35 35

Linear congruence equations

N = 6 α;
N = 6 α + 1;
N = 6 α ± 2; (not N=4;)
N = 6 α + 3; (not N=9;)
N = 6 α - 2; (inc. N=4)
N = 12 α - 3; (inc. N=9)

Bart Selman
CS4700 36 36

N-Queens
N=8

N = 6α ±2, α=1

S(8) = {3}.

For all c ∈ S(8), the linear congruence equations
Let’s consider c=3.

6 x + y ≡ 3 (mod 8),

 where x = 0, 1, 2, 3.
x = 0 y=3; x=1 y = 5; x=2 y= 7;x=3 y = 1;

6 x + y ≡ 6 (mod 8),

 where x = 4,5,6,7,8
X=4, y = 6; x=5 y = 0; x=6 y = 2; x=7 y=4;

Bart Selman
CS4700 37

Partially Filled Nqueens

So the N-queens problem is easy when we start with an empty
board.

What about if we pre-assign some quuens and ask for a

completion?

Open question

Conjecture: completing a partially filled N-
queens board is NP-complete.

Bart Selman
CS4700 38

Example: Crypt-arithmetic Puzzle

 S E N D
+ MOR E

 MONEY

Variables: S, E, N, D, M, O, R, Y

Domains:
[0..9] for S, M, E, N, D, O, R, Y

Search space: 1,814,400
Aside: could have [1..9] for S and M

Soln.:
9567
1085

====
10652

Bart Selman
CS4700 39

Constraints

Option 1:
C1a) 1000 S + 100 E + 10 N + D +
 1000 M + 100 O + 10 R + E
 = 10000 M + 1000 O + 100 N + 10 E + Y
Or use 5 equality constraints, using auxiliary
“carry” variables C1, …, C4 Є [0…9]

Option 2: C1b)
 D + E = 10 C1 + Y
 C1 + N + R = 10 C2 + E
 C2 + E + O = 10 C3 + N
 C3 + S + M = 10 C4 + O
 C4 = M

 SEND
+MORE

MONEY

Need two more sets of constraints:

C2) S =/= 0, M =/= 0
C3) S =/= M, S =/= O, … E =/= Y (28 not equal constraints)
Note: need to assert everything!
Alt. “All_diff(S,M,O,...Y)” for C3.

Which constraint set better
for solving? C1a or C1b? Why?

C1b, more “factored”. Smaller
pieces. Gives more propagation!

Bart Selman
CS4700 40

Some Reflection:
Reasoning/Inference vs. Search

How do human solve this?
What is the first step?

1)   M = 1, because M =/= 0 and …
 the carry over of the addition of two
 digits (plus previous carry) is at most 1.

Actually, a somewhat subtle
piece of mathematical background
knowledge. Also, what made us focus

on M?
Experience / intuition …

Bart Selman
CS4700 41

1)   M = 1, because M =/= 0 and …
 the carry over of the addition of two
 digits (plus previous carry) is at most 1.

2) O = 0. Because M=1 and we have to have a carry to the next
column. S + 1 + C3 is either 10 or 11. So, O equals 0 or 1.
1 is taken. So, O = 0.

3) S = 9. There cannot be a carry to the 4th column (if
there were, N would also have to be 0 or 1. Already
taken.). So, S = 9.

A collection of “small pieces” of local reasoning,
using basic constraints from the rules of arithmetic.
A logic (SAT) based encoding will likely “get these steps.”

Bart Selman
CS4700 42

And further it goes…

Largely, a clever chain of reasoning / inference /
propagation steps (no search) except for…
exploring 2 remaining options (i.e., search) to
find complete solution.

Bart Selman
CS4700 43

Human problem solving nicely captures key idea behind how to solve
CSPs: replace as much of search by propagation (inference/reasoning).

One difficulty: Humans often use subtle background knowledge.

Can search be completely avoided?

A.: Most likely NO. General cryptarithmetic is NP-complete
 (Eppstein 1987)

Bart Selman
CS4700 44

Example: Map-Coloring

Variables WA, NT, Q, NSW, V, SA, T
Domains Di = {red,green,blue}
Constraints: adjacent regions must have different colors

e.g., WA ≠ NT, or (WA,NT) in {(red,green),(red,blue),(green,red), (green,blue),

(blue,red),(blue,green)}

Bart Selman
CS4700 45

Example: Map-Coloring

Solutions are complete and consistent assignments, e.g., WA = red, NT = green,
 Q = red,NSW = green,V = red,SA = blue,T = green

(Aside: Four colors suffice. (Appel and Haken 1977)

Bart Selman
CS4700 46

Constraint graph:
Graph Coloring

Binary CSP: each constraint relates two variables

Constraint graph: nodes are variables, arcs are constraints

Two variables are adjacent or neighbors if they
are connected by an edge or an arc

Bart Selman
CS4700 47

Application of Graph Coloring

Lots of applications involving scheduling and assignments.

Scheduling of final exams – nodes represent finals, edges between finals
denote that both finals have common students (and therefore they have to
have different colors, or different periods).

1
2

3

4 5

6

7

Graph of finals for 7 courses

1
2

3

4 5

6

7

Time Period à courses

I (red) à 1,6
II (blue)à2
III (green)à3,5
IV (black)à

Bart Selman
CS4700 48

Varieties of CSPs
Discrete variables

–  finite domains:
•  n variables, domain size d à O(dn) complete assignments

–  infinite domains:
•  integers, strings, etc.
•  e.g., job scheduling, variables are start/end days for each job
•  need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

Continuous variables

–  e.g., start/end times for Hubble Space Telescope observations
–  linear constraints solvable in polynomial time by linear
 programming

our focus

(includes Boolean satisfiability 1st problem to be shown NP-complete.)

Bart Selman
CS4700 49

Varieties of constraints

Unary constraints involve a single variable,
–  e.g., SA ≠ green

Binary constraints involve pairs of variables,

–  e.g., SA ≠ WA

Higher-order constraints involve 3 or more variables,
–  e.g., cryptarithmetic column constraints

Bart Selman
CS4700 50

CSP as a Search Problem

 Initial state: empty assignment
 Successor function: a value is assigned to any unassigned

variable, which does not conflict with the currently
assigned variables

 Goal test: the assignment is complete
 Path cost: irrelevant

Bart Selman
CS4700 51

Remark

 Finite CSP include 3SAT as a special case (under logical reasoning).
 3SAT is known to be NP-complete.

 So, in the worst-case, we cannot expect to solve a finite CSP in less

than exponential time.

Bart Selman
CS4700 52

Solving CSP by search : Backtrack Search
BFS vs. DFS

–  BFS à not a good idea.
•  A tree with n!dn leaves : (nd)*((n-1)d)*((n-2)d)*…*(1d) = n!dn

•  Reduction by commutativity of CSP
–  A solution is not in the permutations but in combinations.
–  A tree with dn leaves

–  DFS
•  Used popularly

–  Every solution must be a complete assignment and therefore
appears at depth n if there are n variables

–  The search tree extends only to depth n.
•  A variant of DFS: Backtrack search

–  Chooses values for one variable at a time
–  Backtracks when failed even before reaching a leaf.

•  Better than BFS due to backtracking but still need more
 “cleverness” (reasoning/propagation).

Bart Selman
CS4700 53

Backtrack search

Variable assignments are commutative}, i.e.,
[WA = red then NT = green] same as [NT = green then WA = red]

Only need to consider assignments to a single variable at each node

à b = d and there are dn leaves

Depth-first search for CSPs with single-variable assignments is called
 backtrack search

Backtracking search is the basic uninformed algorithm for CSPs

Can solve n-queens for n ≈ 30

Bart Selman
CS4700 54

à Backtrack Search

empty assignment

1st variable

2nd variable

3rd variable

Assignment = {}

Bart Selman
CS4700 55

à Backtrack Search

empty assignment

1st variable

2nd variable

3rd variable

Assignment = {(var1=v11)}

Bart Selman
CS4700 56

à Backtrack Search

empty assignment

1st variable

2nd variable

3rd variable

Assignment = {(var1=v11),(var2=v21)}

Bart Selman
CS4700 57

à Backtrack Search

empty assignment

1st variable

2nd variable

3rd variable

Assignment = {(var1=v11),(var2=v21),(var3=v31)}

Bart Selman
CS4700 58

à Backtrack Search

empty assignment

1st variable

2nd variable

3rd variable

Assignment = {(var1=v11),(var2=v21),(var3=v32)}

Bart Selman
CS4700 59

à Backtrack Search

empty assignment

1st variable

2nd variable

3rd variable

Assignment = {(var1=v11),(var2=v22)}

Bart Selman
CS4700 60

à Backtrack Search

empty assignment

1st variable

2nd variable

3rd variable

Assignment = {(var1=v11),(var2=v22),(var3=v31)}

Bart Selman
CS4700 61

Solving CSP by search : Backtrack Search

function BACKTRACKING-SEARCH (csp) returns a solution, or failure
 return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns a solution, or failure
 if assignment is complete then return assignment
 var ß SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp] then
 add {var=value} to assignment
 result ß RECURSIVE-BACKTRACKING(assignment, csp)
 if result != failure then return result
 remove {var = value} from assignment
 return failure

☜ BACKTRACKING OCCURS HERE!!

Variable & value ordering to increase
the likelihood to success

Improving Backtracking Efficiency

n  Which variable should be assigned next?
n  Minimum Remaining Values heuristic

n  In what order should its values be tried?
n  Least Constraining Values heuristic

n  Can we detect inevitable failure early?
n  Forward checking
n  Constraint propagation (Arc Consistency)

n  When a path fails, can the search avoid repeati
ng this failure?
n  Backjumping

n  Can we take advantage of problem structure?
n  Tree-structured CSP

Early failure-detection to decrease
the likelihood to fail

Restructuring to reduce the
problem’s complexity

General purpose techniques

Improving backtracking efficiency

function BACKTRACKING-SEARCH (csp) returns a solution, or failure
 return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns a solution, or failure
 if assignment is complete then return assignment
 var ß SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp] then
 add {var=value} to assignment
 result ß RECURSIVE-BACKTRACKING(assignment, csp)
 if result != failure then return result
 remove {var = value} from assignment
 return failure

Bart Selman
CS4700 64

Choice of Variable

#1: Minimum Remaining Values (aka Most-constrained-variable
heuristic):

 Select a variable with the fewest remaining values

Bart Selman
CS4700 65

Tie-breaker among most constrained variables
#2 Most constraining variable:

–  choose the variable with the most constraints on remaining
variables

Choice of Variable, cont.

Bart Selman
CS4700 66

Choice of Value:
Least constraining value

#3 Given a variable, choose the least constraining value:

–  the one that rules out the fewest values in the remaining
variables

Bart Selman
CS4700 67

Constraint Propagation

 The process of determining how the possible values of one
variable affect the possible values of other variables

Bart Selman
CS4700 68

Forward Checking

 After a variable X is assigned a value v, look at each unassigned
variable Y that is connected to X by a constraint and deletes
from Y’s domain any value that is inconsistent with v

Terminate branch when any variable has no
legal values & backtrack.

Bart Selman
CS4700 69

Forward checking

Bart Selman
CS4700 70

Bart Selman
CS4700 71

Bart Selman
CS4700 72

Bart Selman
CS4700 73

NT

WA SA
Q

NSW
V

Constraint propagation

Forward checking propagates information from assigned to unassigned
variables, but doesn't provide early detection for all failures:

What’s the problem here?

≠

NT and SA cannot both be blue!

WA NT
SA

Q

NSW V T

Use: constraint propagation repeatedly to enforce constraints locally.

Bart Selman
CS4700 74

Definition (Arc consistency)

A constraint C_xy is said to be arc consistent w.r.t. x iff
 for each value v of x there is an allowed value of y.

Similarly, we define that C_xy is arc consistent w.r.t. y.

A binary CSP is arc consistent iff every constraint C_xy is arc
consistent wrt x as well as wrt y.

Bart Selman
CS4700 75

When a CSP is not arc consistent, we can make it arc
consistent.

This is also called “enforcing arc consistency”.

Bart Selman
CS4700 76

Example

Let domains be
 D_x = {1, 2, 3}, D_y = {3, 4, 5, 6}
One constraint
 C_xy = {(1,3), (1,5), (3,3), (3,6)} [“allowed value pairs”]

C_xy is not arc consistent w.r.t. x, neither w.r.t. y. Why?

 To enforce arc consistency, we filter the domains,
removing inconsistent values.

 D’_x = {1, 3}, D’_y={3, 5, 6}

Bart Selman
CS4700 77

Arc consistency

Simplest form of propagation makes each arc consistent.
I.e., X àY is consistent iff
 for every value x of X there is some allowed y

NT

WA SA
Q

NSW
V

Bart Selman
CS4700 78

NT

WA SA
Q

NSW
V

Bart Selman
CS4700 79

NT

WA SA
Q

NSW
V

Bart Selman
CS4700 80

NT

WA SA
Q

NSW
V

Empty domain detected! Backtrack early.

If X loses a value, neighbors of X need to be rechecked.
Arc consistency detects failure earlier than forward checking.

Can be run as a preprocessor or after each assignment.
(takes polytime each time)

Arc consistency algorithm AC-3

Time complexity:

If Xi’s domain
 is filtered all the constraints

associated with it and
other variables are added to the queue

Binary
constraint

Xi, Xj

n2= number of constraints (edges; n is the # of variables)
d = number of values per variable

REMOVE-ARC-INCONSISTENCY takes O(d2) time
Each variable is inserted in Queue up to d times, since at
most d values can be deleted
àAC3 takes O(n2d3) time to run

Beyond Arc Consistency

X Y

Z

X ≠ Y

X ≠ Z Y ≠ Z

{1, 2}

{1, 2} {1, 2}

Is this network arc consistent?

What is the solution?

Clearly arc consistency is not enough
to guarantee global consistency.
There are other forms of consistency,
such as k-consistency.

But when k = n (num vars), we are
looking at the original problem!

Bart Selman
CS4700 83

k - Consistency

 A graph is K-consistent iff the following is true:

Choose values of any K-1 variables that satisfy all
the constraints among these variables and choose
any K th variable. Then, there exists a value for this
K th variable that satisfies all the constraints
among these K variables.

A graph is strongly K-consistent if it is J-consistsent
for all J<=K.

X Y

Z

X ≠ Y

X ≠ Z Y ≠ Z

{1, 2}

{1, 2} {1, 2}

What type of consistency would we need here to solve any constraint
problem without search?

K = N

Bart Selman
CS4700 84

Consistency

Node consistency = strong 1- consistency
Arc consistency = strong 2- consistency
 (note: arc-consistency is usually
 assumed to include node-consistency as well).
See R&N sect. 6.2.3 for “path-consistency” = 3-consistency for binary CSPs.

Algorithms exist for making a constraint graph strongly K-consistent for K>2
but in practice they are rarely used because of efficiency issues.

Other consistency notions involve “global constraints,” spanning many
variables. E.g. AllDiff constraint can handle Pigeon Hole principle.

Bart Selman
CS4700 85

Summary: Solving a CSP
Search:

–  can find solutions, but may examine many non-solutions
along the way

Constraint Propagation:
–  can rule out non-solutions, but but may not lead
 to full solution.

Interweave constraint propagation and search
–  Perform constraint propagation at each search step.
–  Goal: Find the right balance between search

(backtracking) and propagation (reasoning).

Surprising efficiency (last 10 yrs):
 100K + up to one million variable CSP problems
 are now solvable!
See also local search. R&N 6.4

