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Module:  

Constraint Satisfaction 
 

Chapter 6, R&N 
 (Completes part II – Problem Solving) 
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Outline 

Constraint Satisfaction Problems (CSP) 
Backtracking search for CSPs 
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Key issue: So far, we have treated nodes in  
   search trees as “black boxes,” only looked 
   inside to check whether the node is a goal state. 
  
   In CSPs,  we want to “look inside the nodes”  
   and exploit problem structure during the 
   search. Sometimes, reasoning or inference  
   (“propagation techniques”) will 
   led us find solutions without any search! 
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Motivational Example: 
8-Queens 

Usual goal: 
 place 8 non-attacking 

queens.  

Already shown 
effectiveness of local 
search. 
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Generic (DFS/BFS) search 

Node is a (partial) state of the board 
Action: “place a queen on board” 
Goal test: are there 8 non-attacking queens? 
How many placements of 8 queens will be considered? 
 
The DFS/BFS tree will enumerate up to 
   648 combinations (assume limit depth to 8). 
 
64^8 = 2^48 = 2.8 x 10^14 
Note redundancy: Q1 in (1,3), Q2 in (2,7) … 
                        vs. Q1 in (2,7), Q2 in (1,3) … 

Is this how you would 
program this problem? 
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Alternative: Use “factored representation.” 
Factoring refers to “splitting things into smaller parts.” 

Number of board states to explore: 
“only” 88   = 16.7 x 10^6 combinations. 

State has internal structure. 
1) Here, a set of 8 variables. 
x_1, x_2, … x_8. 
2) Each with domain {1,…8}, the 
possible variable values. 
3) A set of constraints: 
    e.g. no two vars can be assigned 
    the same value. (Why?) 
Each variable gives the position 
of a queen in a row. 

Set of vars, set of possible values for each vars 
& set of constraints defines a CSP. 
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Set of vars, set of possible values for each vars & set of constraints 
defines a CSP. 

 
A solution to the CSP is an assignment of values to the variables so that 

all constraints are satisfied (no “violated constraints.”) 
 
A CSP is inconsistent if no such solution exists. 
    Eg try to place 9 non-attacking queens on an 8x8 board. 
 
Hmm. Can a search program figure out that you can’t place 101 queens 

on 100x100 board? 
Not so easy! Most search approaches can’t. Need much more clever 

reasoning, instead of just search. (Need to use Pigeon Hole principle.) 
      Aside: Factored representation does not even allow one to ask 
      the question. Knowledge is build in.) 
      Alternative question: With N queens is there a solution with queen 
      in bottom right hand corner on a N x N board? 
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How do we search for a solution? 
Start with empty variable assignment (no vars assigned). Then, build 

up partial assignments until all vars assigned. 
 
Action: “assign a variable a value.” 
Goal test: “all vars assigned and no constraint violation.” 
 
What is the search space? (n vars, each with d possible values) 
 
Top level branching:     n . d 
Next branching:       (n-1) . d 
Next branching:       (n-2) . d 
… 
Bottom level:                       d    
    (one var remains to be set) 
 
So, tree with n! d^n leaves.   
 
 

Hmm. But “only” n^d distinct value 
assignments! Different var ordering can lead to 
the same assignment! Wasteful… 
Just “fix” a variable ordering:  
        Backtrack search. 
Check only n^d full var-value assignments. 



Bart Selman 
CS4700 9 

Backtrack search 

Intuitive: 
1)  Fix some ordering on the variables.     Eg x1, x2, x3  … 
2)  Fix some ordering on possible values. Eg 1, 2, 3, … 
3)  Assign first variable, first (legal) value. 
4)  Assign next variable, its first (legal) value. 
5)  Etc. 
6)  Until no remaining (feasible) value exist for variable x_i, 
              backtrack to previous var setting of x_(i-1), try next possible 
              setting. If none exists, move back another level. Etc. 
Visually, very intuitive on the N-Queens board (“the obvious strategy”). 
See figure 6.5 book. Recursive implementation. Practice: Iterative with stack. 

Aside: “legal” and “feasible” 
Already assumes a bit of “reasoning.” (Next.) 

There are many improvements on intuitive idea… 
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Reasoning, inference or “propagation.”  

After placing the first queen, what would you  do for the 2nd? 

Message: 
CSP propagation techniques can dramatically reduce search. 
Sometimes to no search at all! Eg. Sudoku puzzles. 
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General Search vs. 
Constraint satisfaction problems (CSPs) 

Standard search problem: 
–  state is a "black box“ – can be accessed only in limited way:  
    successor function; heuristic function; and goal test. 
 

What is needed for CSP: 
Not just a successor function and goal test. Also  a means of   
propagating the constraints  (e.g. imposed by one queen on  
the others and an early failure test). 
 
à Explicit representation of constraints and constraint 

manipulation algorithms  
à Constraint Satisfaction Problems (CSP) 
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Constraint satisfaction problems (CSPs) 
 
States and goal test have a standard representation. 
 
–  state is defined by variables Xi with values from domain Di 

 
–  goal test is a set of constraints specifying allowable 
    combinations of values for subsets of variables 

 
 Interesting tradeoff: 

 
Example of a (restricted) formal representation language. 

 
Allows useful general-purpose algorithms more powerful than standard search  

algorithms that have to resort to problem specific heuristics 
 to enable solution of large problems. 
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Constraint Satisfaction Problem 

Set of variables {X1, X2, …, Xn} 
Each variable Xi has a domain Di of possible values 
Usually Di is discrete and finite 
Set of constraints {C1, C2, …, Cp} 
Each constraint Ck involves a subset of variables and 

specifies the allowable combinations of values of 
these variables 

 Goal: 

Assign a value to every variable such 
that all constraints are satisfied 
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Motivational Example: 
8-Queens 

How do we represent 8-Queens 
as a CSP:  
Variables? 

Constraints? 
Note: More than one option. 

l = 1 

l = 2 
l = 3 

… 

k = 1 
k = 2 

k = 3 
… 

l – k = 1 

l – k= -5 

l + k = 10 

l – k =0 
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Example: 8-Queens Problem 

 8 variables Xi, i = 1 to 8 (one per row) 
 Domain for each variable {1,2,…,8} 
 Constraints are of the form: 

– Xi ≠ Xj   when  j≠i  (i.e. no two in the same column) 
–  No queens in same diagonal: 

1) Xi – Xj ≠ i – j  

2) Xi – Xj ≠ j – i 
(check that this works!) 

 
 

Alternative? Boolean vars 

Xi – column for queen in row i 
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Boolean Encoding 
 64 variables Xij, i = 1 to 8, j = 1 to 8 
 Domain for each variable {0,1} (or {False, True}) 
 Constraints are of the form: 
Row and columns 

–  If (Xij = 1) then (Xik = 0)  for all k = 1 to 8, k≠j (logical constraint) 
–  Xij = 1 è Xkj = 0  for all k = 1 to 8, k≠i 

Diagonals 
–  Xij = 1 è Xi+l,j+l = 0    l = 1 to 7, i+l ≤8; j+l≤8 (right and up) 
–  Xij = 1 è Xi-l,j+l = 0     l = 1 to 7, i-l ≥1;  j+l≤8 (right and down) 
–  Xij = 1 è Xi-l,j-l = 0      l = 1 to 7, i-l ≥1;  j-l≥1 (left and down) 
–  Xij = 1 è Xi+l,j-l = 0     l = 1 to 7, i+l ≤8; j-l≥1 (left and up) 

3 options:  
1) Maximize sum X_ij  (optimization formulation) 
2) Sum X_ij = N (CSP; bit cumbersome in Boolean logic) 
3) For each row i:  (X_i1 OR X_i2 OR X_i3 … X_iN)  

Xij = 1 iff  “there is a 
queen on location (i,j).” 

What’s missing? Need N (= 8) queens on board! 
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Logical equivalence 

Two sentences p an q  are logically equivalent (≡ or ⇔) iff p ↔ q is a tautology 
(and therefore p and q   have the same truth value for all truth assignments) 

→ → 
→ 

→ → ↔ 
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Propositional Satisfiability problem 

 
Satifiability (SAT): Given a formula in propositional calculus, is there a model 
(i.e., a satisfying interpretation, an assignment to its variables) making it true? 
 
We consider clausal form, e.g.: 

   ( a  ∨   ¬b ∨  ¬ c ) AND  ( b ∨  ¬ c) AND ( a ∨ c) 

n
2 possible assignments 

SAT: prototypical hard combinatorial search and reasoning 
problem. Problem is NP-Complete. (Cook 1971) 

Surprising “power” of SAT for encoding computational problems.  
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Significant progress in  
Satisfiability Methods 

  Software and hardware verification – 
complete methods are critical  - e.g. for 
verifying the correctness of chip design, using 
SAT encodings 

Current methods can verify automatically the 
correctness of  large portions of a chip   

  Going from 50 variable, 200 constraints 
  to 1,000,000 variables  and 5,000,000 constraints 
  in the last 10 years 
     

Many Applications: 
 Hardware and  

Software Verification  
Planning,  

Protocol Design,  
Scheduling, Materials 

Discovery  etc. 
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Turing Award: Model Checking 

Source: Slashdot 
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A “real world” example 
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i.e.  ((not x1) or x7) 
        and ((not x1) or x6) 

and … etc. 

Bounded Model Checking instance: 
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Dimacs  Format for CNF File format  
The benchmark file format will be in a simplified version of the DIMACS format: c 

c start with comments 
c 
c  
p cnf 5 3 
1 -5 4 0 
-1 5 3 4 0 
-3 -4 0 
The file can start with comments, that is lines begining with the character c.  

Right after the comments, there is the line p cnf nbvar nbclauses indicating that the 
instance is in CNF format; nbvar is the exact number of variables appearing in the 
file; nbclauses is the exact number of clauses contained in the file.  

Then the clauses follow. Each clause is a sequence of distinct non-null numbers 
between -nbvar and nbvar ending with 0 on the same line; it cannot contain the 
opposite literals i and -i simultaneously. Positive numbers denote the corresponding 
variables. Negative numbers denote the negations of the corresponding variables.  
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Example of Sat Solver 

SAT Solver : Lingeling 
 
http://fmv.jku.at/lingeling/ 
 
 
 
Nqueen4-v1.cnf 
 
Nquuens4-v2.cnf 
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p cnf 16 84 
1 2 3 4  0 
-1 -2  0 
-1 -3  0 
-1 -4  0 
-2 -3  0 
-2 -4  0 
-3 -4  0 
5 6 7 8  0 
-5 -6  0 
-5 -7  0 
-5 -8  0 
-6 -7  0 
-6 -8  0 
-7 -8  0 
9 10 11 12  0 
-9 -10  0 
-9 -11  0 
-9 -12  0 
-10 -11  0 
-10 -12  0 
-11 -12  0 
13 14 15 16  0 
-13 -14  0 
-13 -15  0 
-13 -16  0 
-14 -15  0 
-14 -16  0 
-15 -16  0 
 

1 5 9 13  0 
-1 -5  0 
-1 -9  0 
-1 -13  0 
-5 -9  0 
-5 -13  0 
-9 -13  0 
2 6 10 14  0 
-2 -6  0 
-2 -10  0 
-2 -14  0 
-6 -10  0 
-6 -14  0 
-10 -14  0 
3 7 11 15  0 
-3 -7  0 
-3 -11  0 
-3 -15  0 
-7 -11  0 
-7 -15  0 
-11 -15  0 
4 8 12 16  0 
-4 -8  0 
-4 -12  0 
-4 -16  0 
-8 -12  0 
-8 -16  0 
-12 -16  0 
 

-1 -6  0 
-1 -11  0 
-1 -16  0 
-6 -11  0 
-6 -16  0 
-11 -16  0 
-2 -7  0 
-2 -12  0 
-7 -12  0 
-3 -8  0 
-5 -10  0 
-5 -15  0 
-10 -15  0 
-9 -14  0 
-4 -7  0 
-4 -10  0 
-4 -13  0 
-7 -10  0 
-7 -13  0 
-10 -13  0 
-3 -6  0 
-3 -9  0 
-6 -9  0 
-2 -5  0 
-8 -11  0 
-8 -14  0 
-11 -14  0 
-12 -15  0 

1  2   3   4 
5  6   7   8 
9  10  11 12 
13  14  15  16 
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How Large are the Problems? 
A bounded model checking problem: 

Source: IBM 
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i.e.,  ((not x1) or x7) 
        ((not x1) or x6) 
 etc. 

                     

x1, x2, x3, etc. are our Boolean variables 
(to be set to True or False) 

Should x1 be set to False?? 

SAT Encoding 

(automatically generated from problem specification) 
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i.e., (x177 or x169 or x161 or x153 … 
x33 or x25 or x17 or x9 or x1 or (not x185))  
 
clauses / constraints are getting more interesting… 

                

… 

Note x1  … 

10 Pages Later: 
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… 

4,000 Pages Later: 
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Current SAT solvers solve this instance in  
under 10 seconds! 

Search space of truth assignments: 

Finally, 15,000 Pages Later: 
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Example of a Boolean Satisfiability (SAT) encoding.  
Very “simple” but effective representation. 
Example of a logical knowledge representation language. 
 
For propositional logic, see R&N 7.4.1 & 7.4.2. 
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Which encoding is better?Allows for faster solutions? 

One would think, fewer variables is better… 
 
Search spaces:  
 
88 = 1.6 x 106    vs   264 = 1.8 x 1019 

 
However, in practice SAT encodings can be surprisingly 
effective, even with millions of Boolean variables. Often, 
few true local minima in search space. 
 
Demo of backtrack search and local search on Boolean 
encoding of N-queens. 
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N-Queens  
 

7 

6 

5 

4 

3 

2 

1 

0 

0 1 2 3 4 5 6 7 

The standard N by N Queen's problem asks how to place N 
queens on an ordinary chess  board so that they don’t 

attack each other 

N=8 

Is this problem  
NP-Complete? 
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N-Queens  
N=8 (another solution) 

7 

6 

5 

4 

3 

2 

1 

0 

0 1 2 3 4 5 6 7 
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Linear congruence equations 

N = 6 α; 
N = 6 α + 1; 
N = 6 α ± 2; (not N=4;) 
N = 6 α + 3; (not N=9;) 
N = 6 α - 2; (inc. N=4) 
N = 12 α - 3; (inc. N=9) 
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N-Queens  
N=8 

N = 6α ±2, α=1 
 
S(8) = {3}. 
 
For all c ∈ S(8), the linear congruence equations 
Let’s consider c=3. 
 
6 x + y ≡ 3 (mod 8), 

 where x = 0, 1, 2, 3. 
x = 0  y=3; x=1 y = 5; x=2 y= 7;x=3 y = 1;  
 
6 x + y ≡ 6 (mod 8), 

 where x = 4,5,6,7,8 
X=4, y = 6; x=5 y = 0; x=6 y = 2; x=7 y=4;  
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Partially Filled Nqueens  

So the N-queens problem is easy when we start with an empty 
board. 

 
What about if we pre-assign some quuens and ask for a 

completion? 
 

Open question 
 
Conjecture: completing a partially filled N-
queens board is NP-complete. 
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Example: Crypt-arithmetic Puzzle 

    S E N D      
+  MOR E            
    ---------- 
   MONEY    

Variables: S, E, N, D, M, O, R, Y 
 
Domains: 
[0..9]  for S, M, E, N, D, O, R, Y 
 
Search space: 1,814,400 
Aside: could have [1..9]  for S and M 
 

Soln.:
9567 
1085 

==== 
10652 
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Constraints 

Option 1: 
C1a)  1000 S + 100 E + 10 N + D + 
          1000 M + 100 O + 10 R + E  
          = 10000 M + 1000 O + 100 N + 10 E + Y 
Or  use 5 equality constraints, using auxiliary 
“carry” variables C1, …, C4 Є [0…9] 

Option 2:  C1b) 
        D + E        = 10 C1 + Y 
      C1 + N + R = 10 C2 + E 
      C2 + E + O = 10 C3 + N 
      C3 + S + M = 10 C4 + O 
      C4               = M 

   SEND   
+MORE 
----------                           
MONEY  

  

Need two more sets of constraints: 

C2)  S =/= 0, M =/= 0 
C3)  S =/= M, S =/= O, … E =/= Y   (28 not equal constraints) 
Note: need to assert everything!  
Alt. “All_diff(S,M,O,...Y)” for C3. 

Which constraint set better 
for solving? C1a or C1b? Why? 

C1b, more “factored”. Smaller 
pieces. Gives more propagation! 
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Some Reflection: 
Reasoning/Inference vs. Search 

How do human solve this? 
What is the first step? 

1)   M = 1, because M =/= 0 and … 
                  the carry over of the addition of two 
                  digits (plus previous carry) is at most 1. 

Actually, a somewhat subtle 
piece of mathematical background 
knowledge. Also, what made us focus 

on M? 
Experience / intuition … 
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1)   M = 1, because M =/= 0 and … 
                  the carry over of the addition of two 
                  digits (plus previous carry) is at most 1. 

2) O = 0. Because M=1 and we have to have a carry to the next 
column. S + 1 + C3 is either 10 or 11. So, O equals 0 or 1.  
1 is taken. So, O = 0. 

3) S = 9.  There cannot be a carry to the 4th column (if 
there were, N would also have to be 0 or 1. Already 
taken.). So, S = 9. 
 

A collection of “small pieces” of local reasoning, 
using basic constraints from the rules of arithmetic. 
A logic (SAT) based encoding will likely “get these steps.” 
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And further it goes… 

Largely, a clever chain of reasoning / inference / 
propagation steps (no search) except for… 
exploring 2 remaining options (i.e., search) to 
find complete solution. 
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Human problem solving nicely captures key idea behind how to solve  
CSPs: replace as much of search by propagation (inference/reasoning). 
 
One difficulty: Humans often use subtle background knowledge. 
 
Can search be completely avoided? 
 
A.: Most likely NO. General cryptarithmetic is NP-complete 
      (Eppstein 1987) 
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Example: Map-Coloring 

Variables WA, NT, Q, NSW, V, SA, T  
Domains Di = {red,green,blue} 
Constraints: adjacent regions must have different colors 
 
e.g., WA ≠ NT, or (WA,NT) in {(red,green),(red,blue),(green,red), (green,blue),

(blue,red),(blue,green)} 
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Example: Map-Coloring 

Solutions are complete and consistent assignments, e.g., WA = red, NT = green, 
     Q = red,NSW = green,V = red,SA = blue,T = green 
 
(Aside: Four colors suffice. (Appel and Haken 1977) 
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Constraint graph: 
Graph Coloring 

Binary CSP: each constraint relates two variables 
 
Constraint graph: nodes are variables, arcs are constraints 
 

Two variables are adjacent or neighbors if they 
are connected by an edge or an arc 
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Application of Graph Coloring 

Lots of applications involving  scheduling and assignments. 
 
Scheduling of final exams – nodes represent finals, edges between finals  
denote that both finals have common students (and therefore they have to  
have different colors, or different periods). 

1 
2 

3 

4 5 

6 

7 

Graph of finals for 7 courses 

1 
2 

3 

4 5 

6 

7 

Time Period à courses 

I (red) à 1,6 
II (blue)à2 
III (green)à3,5 
IV (black)à  
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Varieties of CSPs 
Discrete variables 
 

–  finite domains: 
•  n variables, domain size d à O(dn) complete assignments 

–  infinite domains: 
•  integers, strings, etc. 
•  e.g., job scheduling, variables are start/end days for each job 
•  need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3 

Continuous variables 
 

–  e.g., start/end times for Hubble Space Telescope observations 
–  linear constraints solvable in polynomial time by linear 
     programming 

our focus 

(includes Boolean satisfiability 1st problem to be shown NP-complete.)  
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Varieties of constraints 

Unary constraints involve a single variable,  
–  e.g., SA ≠ green 

 
 
Binary constraints involve pairs of variables, 

–  e.g., SA ≠ WA 
 

Higher-order constraints involve 3 or more variables, 
–  e.g., cryptarithmetic column constraints 
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CSP as a Search Problem 

 Initial state: empty assignment 
 Successor function: a value is assigned to any unassigned 

variable, which does not conflict with the currently 
assigned variables 

 Goal test: the assignment is complete 
 Path cost: irrelevant 
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Remark 

 Finite CSP include 3SAT as a special case (under logical reasoning). 
 3SAT is known to be NP-complete. 
 
 So, in the worst-case, we cannot expect to solve a finite CSP in less 

than exponential time. 
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Solving CSP by search : Backtrack Search 
BFS vs. DFS 

–  BFS à not a good idea. 
•  A tree with n!dn leaves : (nd)*((n-1)d)*((n-2)d)*…*(1d) = n!dn 

•  Reduction by commutativity of CSP 
–  A solution is not in the permutations but in combinations. 
–  A tree with dn leaves 

–  DFS 
•  Used popularly 

–  Every solution must be a complete assignment and therefore 
appears at depth n if there are n variables 

–  The search tree extends only to depth n. 
•  A variant of DFS: Backtrack search 

–  Chooses values for one variable at a time 
–  Backtracks when failed even before reaching a leaf. 

•  Better than BFS due to backtracking but still need more 
            “cleverness” (reasoning/propagation). 
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Backtrack search 

Variable assignments are commutative}, i.e., 
[WA = red then NT = green] same as [ NT = green then WA = red ] 
 
 
Only need to consider assignments to a single variable at each node 

à b = d and there are dn leaves 
 
 
Depth-first search for CSPs with single-variable assignments is called 
       backtrack search 
 
 
Backtracking search is the basic uninformed algorithm for CSPs 
 
 
Can solve n-queens for n ≈ 30 
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à Backtrack Search 

empty assignment 

1st variable 

2nd variable 

3rd variable 

Assignment = {} 
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à Backtrack Search 

empty assignment 

1st variable 

2nd variable 

3rd variable 

Assignment = {(var1=v11)} 
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à Backtrack Search 

empty assignment 

1st variable 

2nd variable 

3rd variable 

Assignment = {(var1=v11),(var2=v21)} 
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à Backtrack Search 

empty assignment 

1st variable 

2nd variable 

3rd variable 

Assignment = {(var1=v11),(var2=v21),(var3=v31)} 
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à Backtrack Search 

empty assignment 

1st variable 

2nd variable 

3rd variable 

Assignment = {(var1=v11),(var2=v21),(var3=v32)} 
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à Backtrack Search 

empty assignment 

1st variable 

2nd variable 

3rd variable 

Assignment = {(var1=v11),(var2=v22)} 
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à Backtrack Search 

empty assignment 

1st variable 

2nd variable 

3rd variable 

Assignment = {(var1=v11),(var2=v22),(var3=v31)} 
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Solving CSP by search : Backtrack Search 

function BACKTRACKING-SEARCH (csp) returns a solution, or failure 
    return RECURSIVE-BACKTRACKING({}, csp) 
 
function RECURSIVE-BACKTRACKING(assignment, csp) returns a solution, or failure 
   if assignment is complete then return assignment 
   var ß SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp) 
   for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do  
   if value is consistent with assignment according to CONSTRAINTS[csp] then  
          add {var=value} to assignment 
          result ß RECURSIVE-BACKTRACKING(assignment, csp) 
          if result != failure then return result 
          remove {var = value} from assignment     
   return failure 



☜ BACKTRACKING OCCURS HERE!! 



Variable & value ordering to increase 
the likelihood to success 

Improving Backtracking Efficiency 

n  Which variable should be assigned next? 
n  Minimum Remaining Values heuristic 

n  In what order should its values be tried? 
n  Least Constraining Values heuristic 

n  Can we detect inevitable failure early? 
n  Forward checking 
n  Constraint propagation (Arc Consistency) 

n  When a path fails, can the search avoid repeati
ng this failure? 
n  Backjumping 

n  Can we take advantage of problem structure? 
n  Tree-structured CSP 

Early failure-detection to decrease 
the likelihood to fail 

Restructuring to reduce the 
problem’s complexity 

General purpose techniques 



Improving backtracking efficiency 

function BACKTRACKING-SEARCH (csp) returns a solution, or failure 
    return RECURSIVE-BACKTRACKING({}, csp) 
 
function RECURSIVE-BACKTRACKING(assignment, csp) returns a solution, or failure 
   if assignment is complete then return assignment 
   var ß SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp) 
   for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do  
   if value is consistent with assignment according to CONSTRAINTS[csp] then  
          add {var=value} to assignment 
          result ß RECURSIVE-BACKTRACKING(assignment, csp) 
          if result != failure then return result 
          remove {var = value} from assignment     
   return failure 





Bart Selman 
CS4700 64 

Choice of Variable 

#1: Minimum Remaining Values (aka Most-constrained-variable 
heuristic): 

    
   Select a variable with the fewest remaining values 
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Tie-breaker among most constrained variables 
#2 Most constraining variable: 
 

–  choose the variable with the most constraints on remaining 
variables 

 

Choice of Variable, cont. 
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Choice of Value: 
Least constraining value 

#3 Given a variable, choose the least constraining value: 
 

–  the one that rules out the fewest values in the remaining 
variables 
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Constraint Propagation 

  The process of determining how the possible values of one 
variable affect the possible values of other variables 
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Forward Checking 

   After a variable X is assigned a value v, look at each unassigned 
variable Y that is connected to X by a constraint and deletes 
from Y’s domain any value that is inconsistent with v 

Terminate branch when any variable has no 
legal values & backtrack. 



Bart Selman 
CS4700 69 

Forward checking 
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NT 

WA SA 
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Constraint propagation 

Forward checking propagates information from assigned to unassigned 
variables, but doesn't provide early detection for all failures: 

 
 
 
 
 
 
 
 
 
 

What’s the problem here? 

≠ 

NT and SA cannot both be blue! 
 

WA NT 
SA 

Q 

NSW V T 

Use: constraint propagation repeatedly to enforce constraints locally. 
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Definition (Arc consistency) 

A constraint C_xy is said to be arc consistent w.r.t. x iff  
    for each value v of x there is an allowed value of y. 
 
Similarly, we define that C_xy is arc consistent w.r.t. y. 
 
A binary CSP is arc consistent iff every constraint C_xy is arc  
consistent wrt x as well as wrt y. 



Bart Selman 
CS4700 75 

When a CSP is not arc consistent, we can make it arc  
consistent. 
 
This is also called “enforcing arc consistency”. 
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Example 

Let domains be  
    D_x = {1, 2, 3}, D_y = {3, 4, 5, 6} 
One constraint  
    C_xy = {(1,3), (1,5), (3,3), (3,6)}      [“allowed value pairs”] 
 
C_xy is not arc consistent w.r.t. x, neither w.r.t. y.  Why? 
 
 To enforce arc consistency, we filter the domains, 
removing inconsistent values. 
 
   D’_x = {1, 3}, D’_y={3, 5, 6} 
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Arc consistency 

Simplest form of propagation makes each arc consistent. 
I.e., X àY is consistent iff 
       for every value x of X there is some allowed y 
 

NT 

WA SA 
Q 

NSW 
V 
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Empty domain detected! Backtrack early. 

If X loses a value, neighbors of X need to be rechecked. 
Arc consistency detects failure earlier than forward checking. 
 
Can be run as a preprocessor or after each assignment. 
(takes polytime each time) 
 



Arc consistency algorithm AC-3 

Time complexity:  
 

If  Xi’s domain 
 is  filtered all the constraints  

associated with it and 
other variables are added to the queue  

Binary  
constraint 

Xi, Xj 

n2= number of constraints (edges; n is the # of variables) 
d = number of values per variable 

REMOVE-ARC-INCONSISTENCY takes O(d2) time 
Each variable is inserted in Queue up to d times, since at 
most d values can be deleted 
àAC3 takes O(n2d3) time to run 



Beyond Arc Consistency 

X Y 

Z 

X ≠ Y 

X ≠ Z Y ≠ Z 

{1, 2} 

{1, 2} {1, 2} 

Is this network arc consistent? 
 
What is the solution? 
 

Clearly arc consistency is not enough 
to guarantee global consistency. 
There are other forms of consistency, 
such as k-consistency. 
 
But when k = n (num vars), we are 
looking at the original problem! 
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k - Consistency 

  A graph is K-consistent iff the following is true: 
 
Choose values of any K-1 variables that satisfy all 
the constraints among these variables and choose 
any K th variable. Then, there exists a value for this 
K th variable that satisfies all the constraints 
among these K variables.  
 
A graph is strongly K-consistent if it is J-consistsent 
for all J<=K. 

X Y 

Z 

X ≠ Y 

X ≠ Z Y ≠ Z 

{1, 2} 

{1, 2} {1, 2} 

What type of consistency would we need here to solve any constraint  
problem without search?  

 
K = N 
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Consistency 

Node consistency  = strong 1- consistency 
Arc consistency    = strong 2- consistency  
                                   (note: arc-consistency is usually 
                                    assumed to include node-consistency as well).  
See R&N sect. 6.2.3 for “path-consistency” = 3-consistency for binary CSPs. 
 
Algorithms exist for making a constraint graph strongly K-consistent for K>2  
but in practice  they are rarely used because of efficiency issues.  
 
Other consistency notions involve “global constraints,” spanning many 
variables. E.g. AllDiff constraint can handle Pigeon Hole principle. 
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Summary: Solving a CSP 
Search:  

–  can find solutions, but may examine many non-solutions 
along the way 

Constraint Propagation: 
–  can rule out non-solutions, but but may not lead 
    to full solution. 

Interweave constraint propagation and search 
–  Perform constraint propagation at each search step. 
–  Goal: Find the right balance between search 

(backtracking) and propagation (reasoning). 
 
Surprising efficiency (last 10 yrs): 
     100K + up to one million variable CSP problems  
     are now solvable! 
See also local search. R&N 6.4 


