
Artificial Neural Networks 



The future of AI 

http://www.youtube.com/watch?v=-lBHNbiooxQ


Restaurant Data Set 



Limited Expressiveness of Perceptrons 



The XOR affair 

• Minsky and Papert (1969) showed 
certain simple functions cannot be 
represented (e.g. Boolean XOR). 
Killed the field!  

• Mid 80th: Non-linear Neural 
Networks (Rumelhart et al. 1986) 



The XOR affair 

http://www.ted.com/talks/marvin_minsky_on_health_and_the_human_mind.html


Neural Networks 

• Rich history, starting in the early forties 
(McCulloch and Pitts 1943). 

• Two views: 
–  Modeling the brain 

–  “Just” representation of complex functions 
 (Continuous; contrast decision trees) 

• Much progress on both fronts. 

• Drawn interest from: Neuroscience, 
Cognitive science, AI, Physics, Statistics, and 
CS/EE. 



Neuron 



Neural Structure 

1. Cell body; one axon (delivers output to other connect neurons); many 
dendrites (provide surface area for connections from other neurons).  
 

2. Axon is a single long fiber. 100 or more times the diameter of cell body. 
Axon connects via synapses to dendrites of other cells. 
 

3. Signals propagated via complicated electrochemical reaction. 
 

4. Each neuron is a “threshold unit”. Neurons do nothing unless the collective 
influence from all inputs reaches a threshold level.  
 

5. Produces full-strength output. “fires”. Stimulation at some synapses 
encourages neurons to fire; some discourage from firing.  
 

6. Synapses can increase (excitatory) or decrease (inhibitory) potential (signal 



Why Neural Nets? 

Motivation:  

 Solving problems under the constraints similar to 
those of the brain may lead to solutions to AI 
problems that would otherwise be overlooked. 

• Individual neurons operate very slowly 
But the brain does complex tasks fast:  massively parallel algorithms 

• Neurons are failure-prone devices 
But brain is reliable anyway  distributed representations 

• Neurons promote approximate matching 
less brittle  learnable 

 





Connectionist Models of Learning 

Characterized by:  

 

• A large number of very simple neuron-like processing elements. 

• A large number of weighted connections between the elements. 

• Highly parallel, distributed control. 

• An emphasis on learning internal representations automatically. 



Artificial Neurons 

 

Activation Functions: 

stept (x) = 1, if x ≥ t; otherwise 0.  sign(x) = +1, if x ≥ 0; otherwise -1 sigmoid(x) = 1/(1+e-x) 



Example: Perceptron 



Perceptrons  
Single Layer Feed Forward Neural Networks 

Can be easily trained using perceptron algorithm 



2-Layer Feedforward Networks 
Boolean functions: 

• Every boolean function can be 
represented by network with single 
hidden layer 

• But might require exponential (in number 
of inputs) hidden units 

Continuous functions: 

• Every bounded continuous function can 
be approximated with arbitrarily small 
error, by network with one hidden layer 
[Cybenko 1989; Hornik et al. 1989] 

 

Any function can be approximated to 
arbitrary accuracy by a network with two 
hidden layers [Cybenko 1988].  
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Multi-Layer Nets 

• Fully connected, two layer, feedforward 

Jonathan 

Mary 

Joe 

Elizabeth 

Alice 

Bart How are Mary and Elizabeth related?  
A=Acquaintances     B=Family 

Activation function: g(x) = (1 if greater than threshold, 0 otherwise) 



Multi-Layer Nets 

• Fully connected, two layer, feedforward 



Ofer Melnik, http://www.demo.cs.brandeis.edu/pr/DIBA 



Ofer Melnik, http://www.demo.cs.brandeis.edu/pr/DIBA 



Ofer Melnik, http://www.demo.cs.brandeis.edu/pr/DIBA 



How can we train perceptrons? 



Hebbian learning 

• D. O. Hebb: 
– The general idea is an old one, that any two cells or systems of 

cells that are repeatedly active at the same time will tend to 
become 'associated', so that activity in one facilitates activity in 
the other." (Hebb 1949, p. 70)  

– "When one cell repeatedly assists in firing another, the axon of 
the first cell develops synaptic knobs (or enlarges them if they 
already exist) in contact with the soma of the second cell." 
(Hebb 1949, p. 63) 

• Cells that fire together, wire together 
– If error is small, increase magnitude of connections that 

contributed. 
– If error is large, decrease magnitude of connections that 

contributed. 

 



Backpropagation 

• Classical measure of error  
– Sum of square errors 

– hw(x) is output on perceptron on x. 

• Gradient decent using partial derivatives 

 

 

 

 

• Update weights 



Backpropagation Training (Overview) 
Training data:  

– (x1,y1),…, (xn,yn), with target labels yz {0,1} 

Optimization Problem (single output neuron): 
– Variables: network weights wij 

– Obj.:E=minw∑z=1..n(yz–o(xz))
2, 

– Constraints: none 

Algorithm: local search via gradient descent. 
• Randomly initialize weights.  
• Until performance is satisfactory,  

– Compute partial derivatives ( E /  wi j) of objective 
function E for each weight wi j 

– Update each weight by wi j Ã wi j +  ( E /  wi j)  



Smooth and Differentiable Threshold Function 

• Replace sign function by a differentiable 
activation function  
 sigmoid function: 



Slope of Sigmoid Function 



Backpropagation Training (Detail) 

• Input: training data (x1,y1),…, (xn,yn), learning rate parameter α. 
• Initialize weights.  
• Until performance is satisfactory 

– For each training instance, 
• Compute the resulting output 

• Compute βz = (yz – oz) for nodes in the output layer 

• Compute βj = ∑k wjk ok (1 – ok) βk for all other nodes. 

• Compute weight changes for all weights using 

   ∆wi j(l) = oi oj (1 – oj) βj 

– Add up weight changes for all training instances, and 
update the weights accordingly.   
  wi,j ← wi,j + α ∑l ∆wi,j(l) 



Summary: Hidden Units 

• Hidden units are nodes that are situated between the input nodes 
and the output nodes.  

• Hidden units allow a network to learn non-linear functions. 

• Hidden units allow the network to represent combinations of the 
input features.  

• Given too many hidden units, a neural net will simply memorize the 
input patterns (overfitting). 

• Given too few hidden units, the network may not be able to 
represent all of the necessary generalizations (underfitting). 



How long should you train the net? 

 

When would you stop training? 

A B C D E 



How long should you train the net?  

• The goal is to achieve a balance between correct 
responses for the training patterns and correct responses 
for new patterns.  

– That is, a balance between memorization and generalization) 

• If you train the net for too long, then you run the risk of 
overfitting. 

– Select number of training iterations via cross-validation on a 
holdout set.  



Regularization 

• Simpler models are better 

• NN with smaller/fewer weights are better 

– Add penalty to total sum of absolute weights 

– Pareto optimize  



Design Decisions 

• Choice of learning rate  

• Stopping criterion – when should training stop? 

• Network architecture 

– How many hidden layers? How many hidden units 
per layer? 

– How should the units be connected? (Fully? Partial? 
Use domain knowledge?) 

• How many restarts (local optima) of search to 
find good optimum of objective function? 



Spiking Nets 

• Represent continues values using rates 

– Output spike if # of incoming spikes > threshold 

– Leaky counter 

 

 

 

 

http://www.ine-news.org 



From  http://www.cs.uu.nl/research/techreps/repo/CS-2003/2003-008.pdf 

Spiking 



Recurrent networks 

• Nodes connect  

– Laterally 

– Backwards, 

– To themselves 

• Complex behavior 

– Dynamics, Memory 

www.stowa-nn.ihe.nl/ANN.htm 



Learning Network Topology 

• Optimal Brain Damage algorithm  
– Trains a fully connected network 
– Removes connections and nodes that contribute least 

to the performance 
• Using information-theoretic criteria 

– Repeats until performance starts decreasing 

• Tiling algorithm: Grows networks 
– Start with a small network that classifies many 

examples 
– Repeatedly add more nodes to classify remaining 

examples 

 



Hyper-Networks 

• Use a network to generate a network 

– E.g. to determine connection wij use network that 
takes in i and j and produces w. 

– In 2D:  

 

Ken Stanley, eplex.cs.ucf.edu 



Hyper-Networks 

Ken Stanley, eplex.cs.ucf.edu 


