Perceptrons and Optimal Hyperplanes

Example: Majority-Vote Function

- Definition: Majority-Vote Function f_{majority}
 - N binary attributes, i.e. $x \in \{0,1\}^N$
 - If more than N/2 attributes in x are true, then $f_{majority}(x)=1$, else $f_{majority}(x)=-1$.
- How can we represent this function as a decision tree?
 - Huge and awkward tree!
- Is there an "easier" representation of f_{majority}?

Example: Spam Filtering

	viagra	learning	the	dating	lottery	spam?
$\vec{x}_1 = ($	1	0	1	0	0)	$y_1 = 1$
$\vec{x}_2 = ($	0	1	1	0	0)	$y_2 = -1$
$\vec{x}_{3} = ($	0	0	0	0	1)	$y_3 = 1$

- Instance Space X:
 - Feature vector of word occurrences => binary features
 - N features (N typically > 50000)
- Target Concept c:
 - Spam (+1) / Ham (-1)
- Type of function to learn:
 - Set of Spam words S, Set of Ham words H
 - Classify as Spam (+1), if more Spam words than Ham words in example.

Example: Spam Filtering

	viagra	learning	the	dating	lottery	spam?
$\vec{x}_1 = ($	1	0	1	0	0)	$y_1 = 1$
$\vec{x}_2 = ($	0	1	1	0	0)	$y_2 = -1$
$\vec{x}_{3} = ($	0	0	0	0	1)	$y_3 = 1$

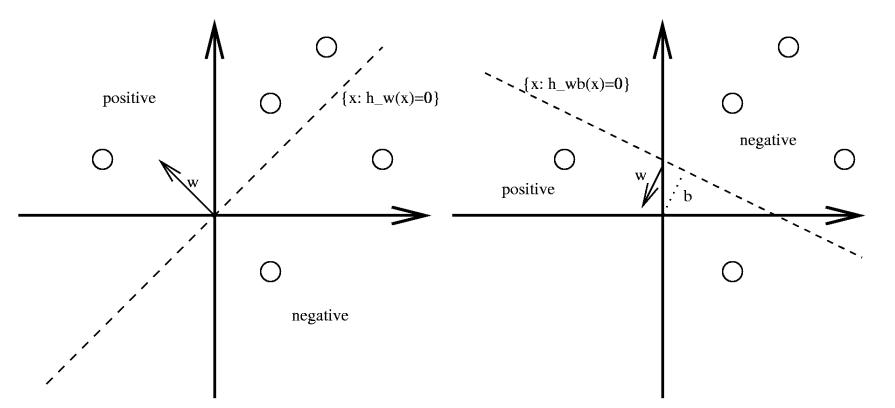
- Use weight vector w=(+1, -1, 0, +1, +1)
 Compute sign(wx)
- More generally, we can use real valued weights to express "spamminess" of word.
 - w=(+10,-1,-0.3,+1,+5)
 - Which vector is most likely to be spam with this weighting? A=x₁, B=x₂, C=x₃

Linear Classification Rules

- Hypotheses of the form
 - unbiased: $h_{\vec{w}}(\vec{x}) = \begin{cases} 1 & w_1 x_1 + ... + w_N x_N > 0 \\ -1 & else \end{cases}$
 - biased: $h_{\vec{w},b}(\vec{x}) = \begin{cases} 1 & w_1x_1 + ... + w_Nx_N + b > 0 \\ -1 & else \end{cases}$
 - Parameter vector w, scalar b
- Hypothesis space H
 - $-H_{unbiased} = \{h_{\vec{w}} : \vec{w} \in \Re^N\}$
 - $-H_{biased} = \{h_{\vec{w},b} : \vec{w} \in \Re^N \ b \in \Re\}$
- Notation

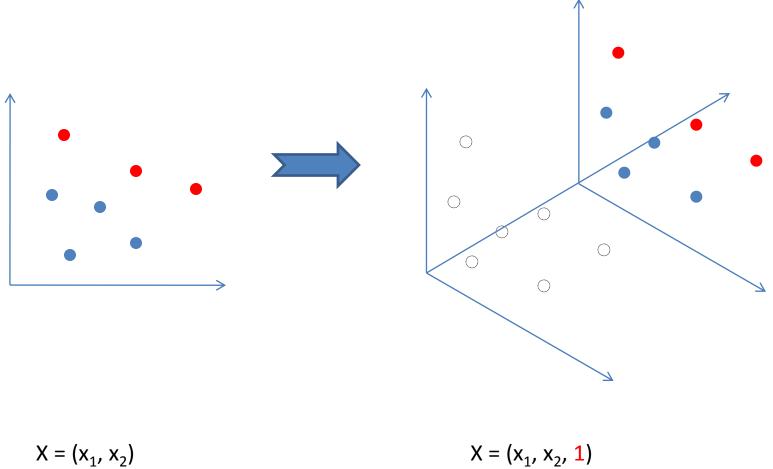
$$- w_1 x_1 + \dots + w_N x_N = \vec{w} \cdot \vec{x} \text{ and } sign(a) = \begin{cases} 1 & a > 0 \\ -1 & else \end{cases}$$
$$- h_{\vec{w}}(\vec{x}) = sign(\vec{w} \cdot \vec{x})$$
$$- h_{\vec{w},b}(\vec{x}) = sign(\vec{w} \cdot \vec{x} + b) \end{cases}$$

Geometry of Hyperplane Classifiers



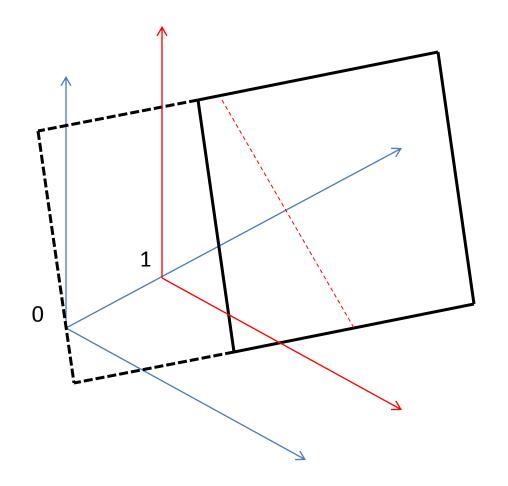
- Linear Classifiers divide instance space as hyperplane
- One side positive, other side negative

Homogeneous Coordinates



 $W = (w_1, w_2, b)$

 $(x_1, x_2, 1)$ W = (w₁, w₂, w₃)



(Batch) Perceptron Algorithm

makes mistake

Algorithm:

•
$$\vec{w}_0 = \vec{0}, \ k = 0$$

repeat

Training

Epoch

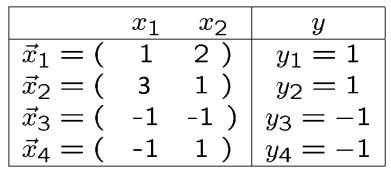
FOR
$$i=1$$
 TO n
* IF $y_i(\vec{w}_k \cdot \vec{x}_i) \leq 0$
 $\cdot \vec{w}_{k+1} = \vec{w}_k + \eta y_i \vec{x}_i$
 $\cdot k = k + 1$
* ENDIF

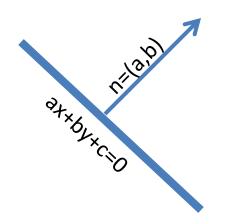
- ENDFOR
- until I iterations reached

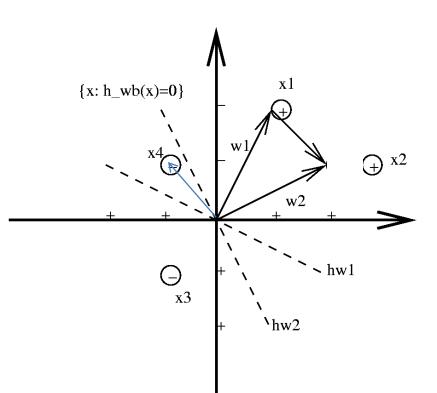
Example: Perceptron

Training Data:

Updates to weight vector:



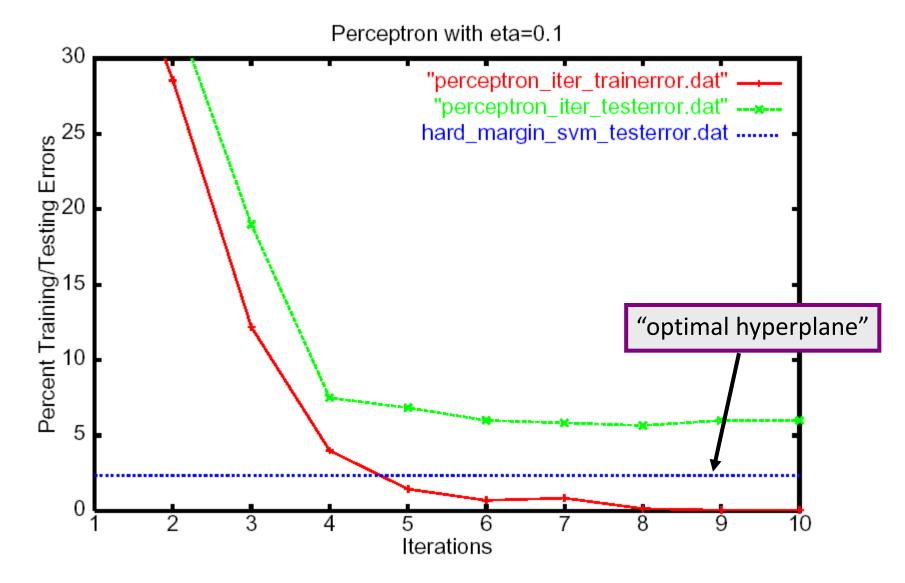




•Init:
$$w=0, \eta=1$$

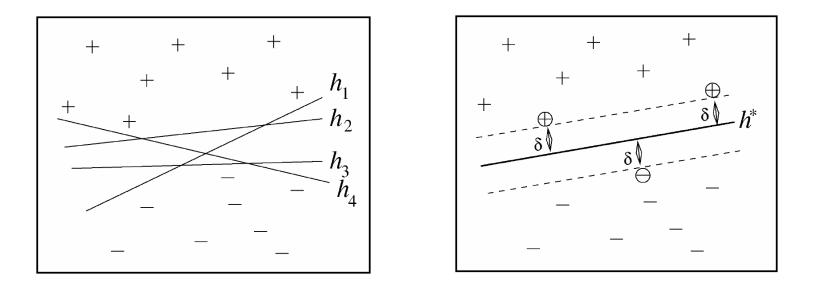
• $(w_0 \ x_1) = 0 \rightarrow \text{incorrect}$
 $w_1 = w_0 + \eta \ y_1 \ x_1 = 0 + 1*1*(1,2) = (1,2)$
 $\rightarrow h_{w1}x_1 = (w_0+1*1*x_1) * x_1 = h_{w0}(x_1)+1 * 1 * (x_1*x_1) = 0 + 5$
• $(w_1 \cdot x_2) = (1,2) \cdot (3,1) = 5 \rightarrow \text{correct}$
• $(w_1 \cdot x_3) = (1,2) \cdot (-1,-1) = -3 \rightarrow \text{correct}$
• $(w_1 \cdot x_4) = (1,2) \cdot (-1,1) = 1 \rightarrow \text{incorrect}$
• $w_2 = (1,2) + \eta \ y_4 \ x_4 = (1,2) - (-1,1) = (2,1)$
 $\rightarrow h_{w2} \ x_4 = (w_1+1*-1*x_4) * x_4 = h_{w1}(x_4) + 1 * -1 * (x_4 * x_4) = -1$

Example: Reuters Text Classification



Optimal Hyperplanes

Assumption: Training examples are linearly separable.

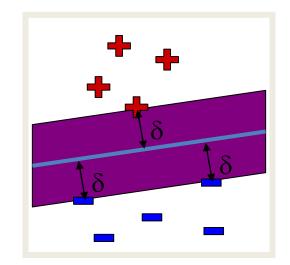


Definition: For a linear classifier $h_{\vec{w},b}$, the margin δ of an example (\vec{x}, y) is $\delta = y(\vec{w} \cdot \vec{x} + b)$.

Definition: The margin is called geometric margin, if $||\vec{w}|| = 1$. Otherwise, functional margin.

Hard-Margin Separation

Goal: Find hyperplane with the largest distance to the closest training examples.



Support Vectors: Examples with minimal distance (i.e. margin).

Why min $\frac{1}{2}w \cdot w$?

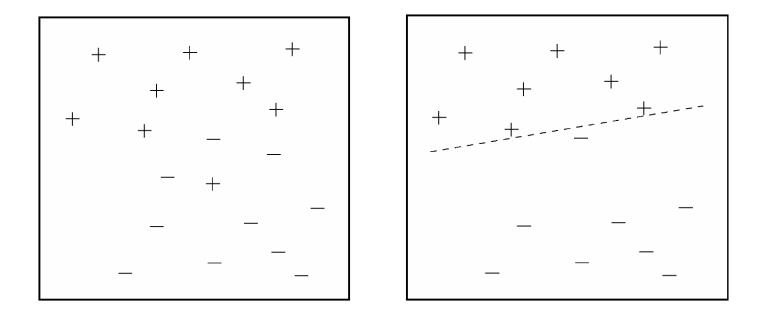
- Maximizing δ and constraining w is equivalent to constraining δ and minimizing w
 - We want maximum margin δ ,
 - we don't care about w
 - But because δ =wx, just requiring maximum δ will yield large w...
 - So we ask for maximum δ but constrain w
 - This is equivalent to constraining δ and minimizing w

Definition: The (hard) margin of a linear classifier $h_{\vec{w},b}$ on data D is $\delta = \min_{(\vec{x},y)\in D} \{y(\vec{w} \cdot \vec{x} + b)\}.$

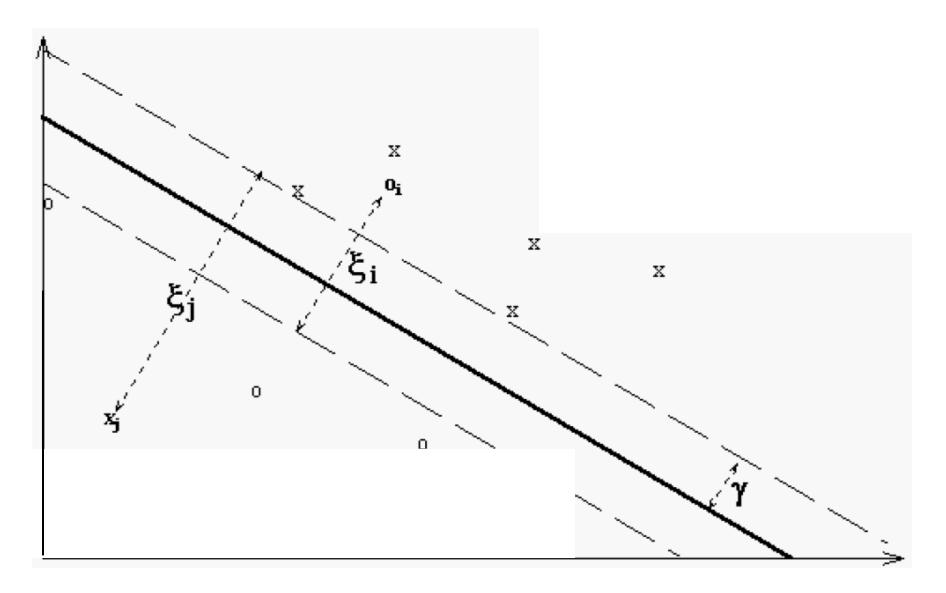
Non-Separable Training Data

Limitations of hard-margin formulation

- For some training data, there is no separating hyperplane.
- Complete separation (i.e. zero training error) can lead to suboptimal prediction error.



Slack



Soft-Margin Separation

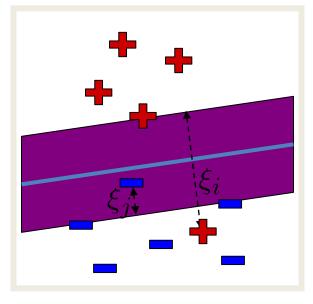
Idea: Maximize margin and minimize training

Hard-Margin OP (Primal):				
$\min_{ec w,b}$	$\frac{1}{2}\vec{w}\cdot\vec{w}$			
s.t.	$-\frac{1}{y_1(\vec{w}\cdot\vec{x}_1+b)} \ge 1$			
	$y_n(ec{w}\cdotec{x}_n+b)\geq 1$			

Soft-Margin OP (Primal):

$$\min_{\vec{w},\vec{\xi},b} \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i=1}^{n} \xi_i$$
s.t. $y_1(\vec{w} \cdot \vec{x}_1 + b) \ge 1 - \xi_1 \land \xi_1 \ge 0$
...
 $y_n(\vec{w} \cdot \vec{x}_n + b) > 1 - \xi_n \land \xi_n > 0$

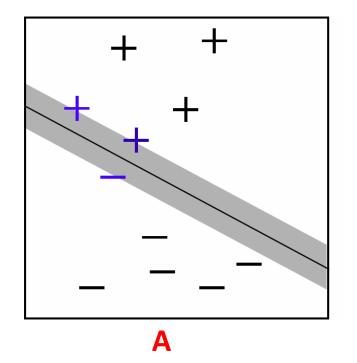
- Slack variable ξ_i measures by how much (x_i, y_i) fails to achieve margin δ
- Σξ_i is upper bound on number of training errors
- C is a parameter that controls trade-off between margin and training error.

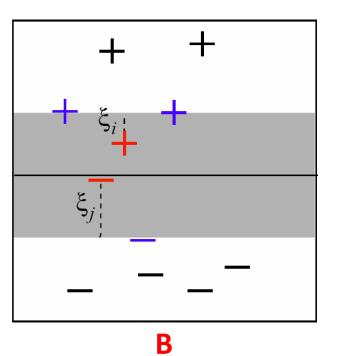


Soft-Margin OP (Primal):

$$\min_{\vec{w},\vec{\xi},b} \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i=1}^{n} \xi_i$$
s.t. $y_1(\vec{w} \cdot \vec{x}_1 + b) \ge 1 - \xi_1 \land \xi_1 \ge 0$
...
 $y_n(\vec{w} \cdot \vec{x}_n + b) \ge 1 - \xi_n \land \xi_n \ge 0$

Which of these two classifiers was produced using a larger value of C?



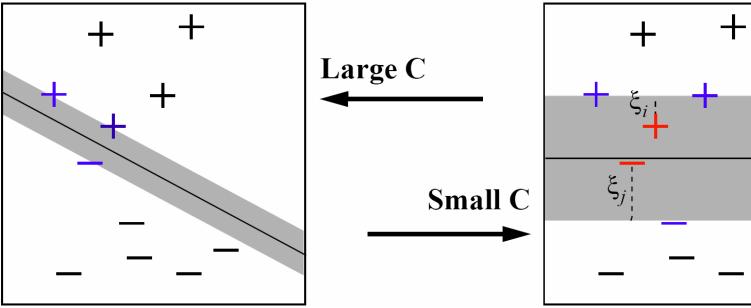


Controlling Soft-Margin Separation

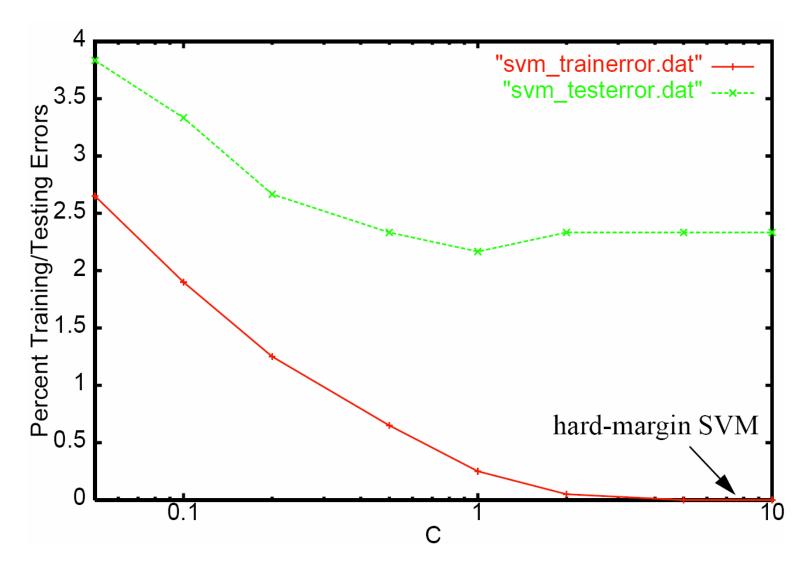
- Σξi is upper bound on number of training errors
- •C is a parameter

Soft-Margin OP (Primal):

$$\min_{\vec{w},\vec{\xi},b} \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i=1}^{n} \xi_i$$
s.t. $y_1(\vec{w} \cdot \vec{x}_1 + b) \ge 1 - \xi_1 \land \xi_1 \ge 0$
...
 $y_n(\vec{w} \cdot \vec{x}_n + b) \ge 1 - \xi_n \land \xi_n \ge 0$



Example Reuters "acq": Varying C



Example: Margin in High-Dimension

	x_{I}	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇	у
Example 1	1	0	0	1	0	0	0	1
Example 2	1	0	0	0	1	0	0	1
Example 3	0	1	0	0	0	1	0	-1
Example 4	0	1	0	0	0	0	1	-1
	w ₁	<i>w</i> ₂	<i>w</i> ₃	<i>w</i> ₄	<i>w</i> ₅	w ₆	<i>w</i> ₇	b
Hyperplane 1	1	1	0	0	0	0	0	2
Hyperplane 2	0	0	0	1	1	-1	-1	0
Hyperplane 3	1	-1	1	0	0	0	0	0
Hyperplane 4	1	-1	0	0	0	0	0	0
Hyperplane 5	0.95	-0.95	0	0.05	0.05	-0.05	-0.05	0

- $\operatorname{Err}_{Dtrain}(h_{\mathbf{w}_1,b_1}) = 2$ and $\sum \xi_i = 8$, $||\mathbf{w}_1|| = \sqrt{2} \implies \delta_1 = -3/\sqrt{2}$
- $\mathbf{Err}_{Dtrain}(h_{\mathbf{w}_2,b_2}) = 0$ and $\sum \xi_i = 0$, $||\mathbf{w}_2|| = \sqrt{4} \implies \delta_2 = 1/\sqrt{4}$
- $\mathbf{Err}_{Dtrain}(h_{\mathbf{w}_3,b_3}) = 0$ and $\sum \xi_i = 0$, $||\mathbf{w}_3|| = \sqrt{3} \implies \delta_3 = 1/\sqrt{2}$
- $\mathbf{Err}_{Dtrain}(h_{\mathbf{w}_4,b_4}) = 0$ and $\sum \xi_i = 0$, $||\mathbf{w}_4|| = \sqrt{2} \implies \delta_4 = 1/\sqrt{2}$
- $\operatorname{Err}_{Dtrain}(h_{\mathbf{w}_5,b_5}) = 0$ and $\sum \xi_i = 0$, $||\mathbf{w}_5|| = \sqrt{2 * 0.9025 + 4 * 0.0025} \implies \delta_5 = 1/\sqrt{1.815}$