Perceptrons and Optimal Hyperplanes

Example: Majority-Vote Function

- Definition: Majority-Vote Function $\mathrm{f}_{\text {majority }}$
$-N$ binary attributes, i.e. $x \in\{0,1\}^{N}$
- If more than $N / 2$ attributes in x are true, then $f_{\text {majority }}(x)=1$, else $f_{\text {majority }}(x)=-1$.
- How can we represent this function as a decision tree?
- Huge and awkward tree!
- Is there an "easier" representation of $f_{\text {majority }}$?

Example: Spam Filtering

viagra learning the dating lottery spam?
\(\left.$$
\begin{array}{|llllll|c|}\hline \vec{x}_{1}=\left(\begin{array}{llll} & 1 & 0 & 1 \\
0 & 0\end{array}
$$\right) \& y_{1}=1

\vec{x}_{2}=(\& 0 \& 1 \& 1 \& 0 \& 0\end{array}\right) \quad\)| $y_{2}=-1$ |
| :---: |
| $\vec{x}_{3}=($ |
| 0 |

- Instance Space X:
- Feature vector of word occurrences => binary features
- N features (N typically > 50000)
- Target Concept c:
- Spam (+1) / Ham (-1)
- Type of function to learn:
- Set of Spam words S, Set of Ham words H
- Classify as Spam (+1), if more Spam words than Ham words in example.

Example: Spam Filtering

 viagra learning the dating lottery spam?\(\left.$$
\begin{array}{|llllll|c|}\hline \vec{x}_{1}=\left(\begin{array}{llll} & 1 & 0 & 1 \\
0 & 0\end{array}
$$\right) \& y_{1}=1

\vec{x}_{2}=(\& 0 \& 1 \& 1 \& 0 \& 0\end{array}\right) \quad\)| $y_{2}=-1$ |
| :---: |
| $\vec{x}_{3}=($ |
| 0 |

- Use weight vector $w=(+1,-1,0,+1,+1)$
- Compute sign(wx)
- More generally, we can use real valued weights to express "spamminess" of word.
- $w=(+10,-1,-0.3,+1,+5)$
- Which vector is most likely to be spam with this weighting? $A=x_{1}, B=x_{2}, C=x_{3}$

Linear Classification Rules

- Hypotheses of the form
- unbiased:

$$
h_{\vec{w}}(\vec{x})=\left\{\begin{aligned}
1 & w_{1} x_{1}+\ldots+w_{N} x_{N}>0 \\
-1 & \text { else }
\end{aligned}\right.
$$

- biased:

$$
h_{\vec{w}, b}(\vec{x})=\left\{\begin{aligned}
1 & w_{1} x_{1}+\ldots+w_{N} x_{N}+b>0 \\
-1 & \text { else }
\end{aligned}\right.
$$

- Parameter vector w, scalar b
- Hypothesis space H

$$
\begin{aligned}
& -H_{\text {unbiased }}=\left\{h_{\vec{w}}: \vec{w} \in \Re^{N}\right\} \\
& -H_{\text {biased }}=\left\{h_{\vec{w}, b}: \vec{w} \in \Re^{N} b \in \Re\right\}
\end{aligned}
$$

- Notation

$$
\begin{aligned}
& -{ }_{w_{1} x_{1}+\ldots+w_{N} x_{N}=\vec{w} \cdot \vec{x} \text { and } \operatorname{sign}(a)=\left\{\begin{array}{rl}
1 & a>0 \\
-1 & \text { else }
\end{array}\right.}^{-{ }_{h_{\vec{w}}(\vec{x})=\operatorname{sign}(\vec{w} \cdot \vec{x})}} \begin{array}{l}
{ }_{h_{\vec{w}}, b}(\vec{x})=\operatorname{sign}(\vec{w} \cdot \vec{x}+b)
\end{array}
\end{aligned}
$$

Geometry of Hyperplane Classifiers

- Linear Classifiers divide instance space as hyperplane
- One side positive, other side negative

Homogeneous Coordinates

(Batch) Perceptron Algorithm

Algorithm:

- $\vec{w}_{0}=\overrightarrow{0}, k=0$
- repeat
makes mistake

Training

$$
\begin{aligned}
&- \text { FOR } i=1 \text { TO } n \\
& * \text { IF } y_{i}\left(\vec{w}_{k} \cdot \vec{x}_{i}\right) \leq \\
& \cdot \vec{w}_{k+1}=\vec{w}_{k}+ \\
& \cdot k=k+1 \\
& * \text { ENDIF } \\
&- \text { ENDFOR }
\end{aligned}
$$

$$
* \text { IF } y_{i}\left(\vec{w}_{k} \cdot \vec{x}_{i}\right) \leq 0
$$

$$
\cdot \vec{w}_{k+1}=\vec{w}_{k}+\eta y_{i} \vec{x}_{i}
$$

- until I iterations reached

Example: Perceptron

Training Data:

	x_{1}	x_{2}
$\vec{x}_{1}=\left(\begin{array}{cc}1 & 2\end{array}\right)$	y	
$\vec{x}_{2}=\left(\begin{array}{cc} \\ 3 & 1\end{array}\right)$	$y_{2}=1$	
$\vec{x}_{3}=\left(\begin{array}{cc}-1 & -1\end{array}\right)$	$y_{3}=-1$	
$\vec{x}_{4}=\left(\begin{array}{ll}1 & 1\end{array}\right)$	$y_{4}=-1$	

Updates to weight vector:

-Init: $w=0, \eta=1$
$\bullet\left(\begin{array}{ll}\mathrm{w}_{0} & \mathrm{x}_{1}\end{array}\right)=0 \rightarrow$ incorrect

$$
\mathrm{w}_{1}=\mathrm{w}_{0}+\eta \mathrm{y}_{1} \mathrm{x}_{1}=0+1 * 1 *(1,2)=(1,2)
$$

$$
\rightarrow \mathrm{h}_{\mathrm{w} 1} \mathrm{x}_{1}=\left(\mathrm{w}_{0}+1 * 1 * \mathrm{x}_{1}\right) * \mathrm{x}_{1}=\mathrm{h}_{\mathrm{w} 0}\left(\mathrm{x}_{1}\right)+1 * 1 *\left(\mathrm{x}_{1} * \mathrm{x}_{1}\right)=0+5
$$

$\cdot\left(\mathrm{w}_{1} \cdot \mathrm{x}_{2}\right)=(1,2) \cdot(3,1)=5 \rightarrow$ correct
$\cdot\left(\mathrm{w}_{1} \cdot \mathrm{x}_{3}\right)=(1,2) \cdot(-1,-1)=-3 \rightarrow$ correct
$\cdot\left(\mathrm{w}_{1} \cdot \mathrm{x}_{4}\right)=(1,2) \cdot(-1,1)=1 \rightarrow$ incorrect

$$
\cdot \mathrm{w}_{2}=(1,2)+\eta \mathrm{y}_{4} \mathrm{x}_{4}=(1,2)-(-1,1)=(2,1)
$$

$\rightarrow \mathrm{h}_{\mathrm{w} 2} \mathrm{X}_{4}=\left(\mathrm{w}_{1}+1 *-1 * \mathrm{x}_{4}\right) * \mathrm{x}_{4}=\mathrm{h}_{\mathrm{w} 1}\left(\mathrm{x}_{4}\right)+1 *-1 *\left(\mathrm{x}_{4} * \mathrm{x}_{4}\right)=-1$

Example: Reuters Text Classification

Optimal Hyperplanes

Assumption: Training examples are linearly separable.

Definition: For a linear classifier $h_{\vec{w}, b}$, the margin δ of an example (\vec{x}, y) is $\delta=y(\vec{w} \cdot \vec{x}+b)$.
Definition: The margin is called geometric margin, if $\|\vec{w}\|=1$. Otherwise, functional margin.

Hard-Margin Separation

Goal: Find hyperplane with the largest distance to the closest training examples.

```
Optimization Problem (Primal):
\begin{array} { l l } { \operatorname { m i n } _ { \vec { w } , b } } & { \frac { 1 } { 2 } \vec { w } \cdot \vec { w } } \\ { \text { s.t. } } & { y _ { 1 } ( \vec { w } \cdot \vec { x } _ { 1 } + b ) \geq 1 } \end{array}
yn}(\vec{w}\cdot\mp@subsup{\vec{x}}{n}{}+b)\geq
```

Support Vectors: Examples with minimal distance (i.e. margin).

Why $\min 1 / 2 w \cdot w ?$

- Maximizing δ and constraining wis equivalent to constraining δ and minimizing w
- We want maximum margin δ,
- we don't care about w
- But because $\delta=w x$, just requiring maximum δ will yield large w...
- So we ask for maximum δ but constrain w
- This is equivalent to constraining δ and minimizing w

Definition: The (hard) margin of a linear classifier $h_{\vec{w}, b}$ on data D is $\delta=\min _{(\vec{x}, y) \in D}\{y(\vec{w} \cdot \vec{x}+b)\}$.

Non-Separable Training Data

Limitations of hard-margin formulation

- For some training data, there is no separating hyperplane.
- Complete separation (i.e. zero training error) can lead to suboptimal prediction error.

Slack

Soft-Margin Separation

Idea: Maximize margin and minimize training

$$
\begin{array}{ll}
\text { Hard-Margin OP (Primal): } \\
\min _{\vec{w}, b} & \frac{1}{2} \vec{w} \cdot \vec{w} \\
\text { s.t. } & y_{1}\left(\vec{w} \cdot \vec{x}_{1}+b\right) \geq 1 \\
& \cdots \\
& y_{n}\left(\vec{w} \cdot \vec{x}_{n}+b\right) \geq 1 \\
\hline
\end{array}
$$

Soft-Margin OP (Primal):

$$
\begin{aligned}
& \min _{\vec{w}, \vec{\xi}, b} \frac{1}{2} \vec{w} \cdot \vec{w}+C \sum_{i=1}^{n} \xi_{i} \\
& \text { s.t. } y_{1}\left(\vec{w} \cdot \vec{x}_{1}+b\right) \geq 1-\xi_{1} \wedge \xi_{1} \geq 0 \\
& \quad \quad . \\
& \quad y_{n}\left(\vec{w} \cdot \vec{x}_{n}+b\right) \geq 1-\xi_{n} \wedge \xi_{n} \geq 0
\end{aligned}
$$

- Slack variable ξ_{i} measures by how much ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$) fails to achieve margin δ
- $\Sigma \xi_{i}$ is upper bound on number of training errors
- C is a parameter that controls trade-off between margin and training error.

$$
\begin{aligned}
& \text { Soft-Margin OP (Primal): } \\
& \begin{array}{l}
\min _{\vec{w}, \vec{\xi}, b} \frac{1}{2} \vec{w} \cdot \vec{w}+C \sum_{i=1}^{n} \xi_{i} \\
\text { s.t. } y_{1}\left(\vec{w} \cdot \vec{x}_{1}+b\right) \geq 1-\xi_{1} \wedge \xi_{1} \geq 0 \\
\quad \ldots \\
\quad y_{n}\left(\vec{w} \cdot \vec{x}_{n}+b\right) \geq 1-\xi_{n} \wedge \xi_{n} \geq 0
\end{array}
\end{aligned}
$$

Which of these two classifiers was produced using a larger value of C?

Controlling Soft-Margin Separation

- $\Sigma \xi i$ is upper bound on number of training errors
- C is a parameter Soft-Margin OP (Primal):

$$
\begin{aligned}
& \min _{\vec{w}, \vec{\xi}, b} \frac{1}{2} \vec{w} \cdot \vec{w}+C \sum_{i=1}^{n} \xi_{i} \\
& \text { s.t. } y_{1}\left(\vec{w} \cdot \vec{x}_{1}+b\right) \geq 1-\xi_{1} \wedge \xi_{1} \geq 0
\end{aligned}
$$

$$
y_{n}\left(\vec{w} \cdot \vec{x}_{n}+b\right) \geq 1-\xi_{n} \wedge \xi_{n} \geq 0
$$

Example Reuters "acq": Varying C

Example: Margin in High-Dimension

	$\boldsymbol{x}_{\boldsymbol{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{x}_{\boldsymbol{4}}$	$\boldsymbol{x}_{\mathbf{5}}$	$\boldsymbol{x}_{\boldsymbol{6}}$	$\boldsymbol{x}_{\boldsymbol{7}}$	\boldsymbol{y}
Example 1	1	0	0	1	0	0	0	1
Example 2	1	0	0	0	1	0	0	1
Example 3	0	1	0	0	0	1	0	-1
Example 4	0	1	0	0	0	0	1	-1
	$\boldsymbol{w}_{\boldsymbol{1}}$	$\boldsymbol{w}_{\mathbf{2}}$	$\boldsymbol{w}_{\mathbf{3}}$	$\boldsymbol{w}_{\boldsymbol{4}}$	\boldsymbol{w}_{5}	$\boldsymbol{w}_{\boldsymbol{6}}$	$\boldsymbol{w}_{\boldsymbol{7}}$	\mathbf{b}
Hyperplane 1	1	1	0	0	0	0	0	2
Hyperplane 2	0	0	0	1	1	-1	-1	0
Hyperplane 3	1	-1	1	0	0	0	0	0
Hyperplane 4	1	-1	0	0	0	0	0	0
Hyperplane 5	0.95	-0.95	0	0.05	0.05	-0.05	-0.05	0

- $\operatorname{Err}_{\text {Dtrain }}\left(h_{\mathbf{w}_{1}, b_{1}}\right)=2$ and $\sum \xi_{i}=8,\left\|\mathbf{w}_{1}\right\|=\sqrt{2} \Longrightarrow \delta_{1}=-3 / \sqrt{2}$
- $\operatorname{Err}_{\text {Dtrain }}\left(h_{\mathbf{w}_{2}, b_{2}}\right)=0$ and $\sum \xi_{i}=0,\left\|\mathbf{w}_{2}\right\|=\sqrt{4} \Longrightarrow \delta_{2}=1 / \sqrt{4}$
- $\operatorname{Err}_{\text {Dtrain }}\left(h_{\mathbf{w}_{3}, b_{3}}\right)=0$ and $\sum \xi_{i}=0,\left\|\mathbf{w}_{3}\right\|=\sqrt{3} \Longrightarrow \delta_{3}=1 / \sqrt{2}$
- $\operatorname{Err}_{D \text { train }}\left(h_{\mathbf{w}_{4}, b_{4}}\right)=0$ and $\sum \xi_{i}=0,\left\|\mathbf{w}_{4}\right\|=\sqrt{2} \Longrightarrow \delta_{4}=1 / \sqrt{2}$
- $\operatorname{Err}_{\text {Dtrain }}\left(h_{\mathbf{w}_{5}, b_{5}}\right)=0$ and $\sum \xi_{i}=0,\left\|\mathbf{w}_{5}\right\|=\sqrt{2 * 0.9025+4 * 0.0025} \Longrightarrow \delta_{5}=1 / \sqrt{1.815}$

