
Statistical Learning Theory 



Why learning doesn’t always work  

• Unrealizability 
– f may not be in H or not easily represented in H 

• Variance 
– There may be many ways to represent f  
– depends on the specific training set 

• Noise/stochasticity 
– Elements that cannot be predicted: Missing attributes 

or stochastic process 

• Complexity 
– Finding f may be intractable 

 



Regularization 

• Forcing solutions to be simple 

– Add penalty for complex models 

– E.g. accuracy + size of tree 

– Number of samples in Thin-KNN 

– Sum of weights or number of nonzero weights 
(number of connections) in NN 

• Minimum Description Length (MDL) 

 



Example: Smart Investing 
Task: Pick stock analyst based on past performance. 
Experiment:  

– Have analyst predict “next day up/down” for 10 days. 
– Pick analyst that makes the fewest errors. 

Situation 1:  
– 1 stock analyst {A1}, A1 makes 5 errors 

Situation 2:  
– 3 stock analysts {A1,B1,B2}, B2 best with 1 error 

Situation 3:  
– 1003 stock analysts {A1,B1,B2,C1,…,C1000},  

C543 best with 0 errors 
 

Which analysts are you most confident in: 
A1, B2, or C543? 



Outline 

Questions in Statistical Learning Theory: 

– How good is the learned rule after n examples? 

– How many examples do I need before the learned rule is accurate? 

– What can be learned and what cannot? 

– Is there a universally best learning algorithm? 

 

In particular, we will address:  

 What is the true error of h if we only know the training error of h? 

– Finite hypothesis spaces and zero training error 

– (Finite hypothesis spaces and non-zero training error) 



Game: Randomized 20-Questions 
Game: 20-Questions 

– I think of object f 

– For i = 1 to 20 

• You get to ask 20 yes/no questions about f and I have to answer 
truthfully 

– You make a guess h 

– You win, if f=h 

Game: Randomized 20-Questions 

– I pick function f  H, where f: X  {-1,+1} 

– For i = 1 to 20 

• World delivers instances x  X with probability P(x) and I have to tell 
you f(x) 

– You form hypothesis h  H trying to guess my f  H 

– You win if f(x)=h(x) with probability at least 1-ε for x drawn 
according to P(x). 

 



Inductive Learning Model 

• Probably Approximately Correct (PAC) Learning Model: 
– Take any function f from H 
– Draw n Training examples Dtrain  from P(x), label as y=f(x) 

– Run learning algorithm on Dtrain to produce h from H 
– Gather Test Examples Dtest from P(x) 

– Apply h to Dtest and measure fraction (probability) of h(x)≠f(x) 
– How likely is it that error probability is less than some 

threshold ε (for any f from H)? 

Real-world Process 

(x1,y1), …, (xn,yn) Learner (xn+1,yn+1), … 

Training Data Dtrain Test Data Dtest 

P(x), y=f(x) P(x), y=f(x) 

h Dtrain 



What are the chances of a wrong 
hypothesis making correct predictions? 

H 

Hbad 

 

f 



Useful Formulas 

• Binomial Distribution: The probability of 
observing x heads in a sample of n independent 
coin tosses, where in each toss the probability of 
heads is p, is 
 
 

• Union Bound:  
 
 

• Unnamed: 
 
 
 



Chances of getting it wrong 

• Chances that hbHbad is consistent with N 
examples 
– ErrorRate(hb)> so chances it agrees with an example is  (1- ) 

– Chances it agrees with N examples  (1- )N 

– P(Hbad  contains a consistent hypothesis) = |Hbad| (1- )N  |H| (1- )N 

– We want to reduce this below some probability  so |H| (1- )N   

– Given (1- )e- we get 
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Size of hypothesis space |H| 

• How many possible Boolean functions are 
there on n binary attributes? 

• A = n 

• B = 2n 

• C = 22n 

• D =   

• E =  

 

 

 

n22 n222



Size of hypothesis space |H| 

x1 x2 x3 Function 

1 1 1 y0 

1 1 0 y1 

1 0 1 y2 

1 0 0 Y3 

0 1 1 Y4 

0 1 0 Y5 

0 0 1 Y6 

0 0 0 Y7 

N=3  |H|=256     N=10|H|=1.8x10308 



All Boolean functions 

• If |H|=         then 

 

 

 

• So we need to see the entire space to 
determine the function reliably 
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Approach 

• Look for simplest hypothesis 

• Limit the size of |H| by only looking at simple 
(limited) subspace 



Example: Decision lists 

• List of tests, executed serially 

 

 

 

• k-DL: Each test contains at most k literals 

• Includes as a subset k-DT 

– All decision trees of depth at most k  



Example: Decision lists 

• Number of possible tests of size k from n attributes is 
 
 

• Total size of hypothesis space |H| is 
– Each test can yield Yes, No, or be Absent 
– Tests can be ordered in any sequence 

 
 

• Therefore number of training samples is reasonable for 
small k 
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Example: Decision lists 

• Search for simple (small k) tests that classify large portion of data 

• Add test to list, remove classified datapoints 

• Repeat with remaining data 





Inductive bias 

• The inductive bias of a learning algorithm is 
the set of assumptions that the learner uses 
to predict outputs given inputs that it has not 
encountered (Mitchell, 1980) 

– No Free Lunch (Mitchell, Wolpert,…) 

– Bias-free learning is futile* 

 

*Wolpert and Macready have proved that there are free 
lunches in coevolutionary optimization 

http://en.wikipedia.org/wiki/Coevolution


Generalization Error Bound:  
Finite H, Zero Training Error 

• Model and Learning Algorithm 

– Learning Algorithm A with a finite hypothesis space H 

– Sample of n labeled examples Dtrain drawn according to P(x) 

– Target function f H  
 At least one h  H has zero training error ErrDtrain

(h)  

– Learning Algorithm A returns zero training error hypothesis ĥ 

• What is the probability   that the true prediction error of ĥ is larger  

than ? 
 



Generalization Error Bound:  
Finite H, Non-Zero Training Error 

• Model and Learning Algorithm 

– Sample of n labeled examples Dtrain 

– Unknown (random) fraction of examples in Dtrain is mislabeled (noise) 

– Learning Algorithm A with a finite hypothesis space H 

– A returns hypothesis ĥ=A(S) with lowest training error  

• What is the probability   that the prediction error of ĥ exceeds the 

fraction of training errors by more than ? 
 



Overfitting vs. Underfitting 

[Mitchell, 1997] 

With probability at least (1-): 



VC-Dimension 
• The capacity of a hypothesis space H  

– The maximum number of points with arbitrary 
labelings that could be separated (“shattered”) 

– VC dimension of linear classifiers is 3 



Representational power 

• Machine f can shatter a set of points x1, x2 .. Xr 
if and only if…  

– For every possible training set of the form (x1,y1) , 
(x2,y2) ,… (xr ,yr)…There exists some value of a that 
gets zero training error. 



Representational power 

• What is the VC dimension of the hypothesis 
space of all circles centered at the origin? 

 

h = f(x,b) = sign(x.x-b) 

A=1     B=2     C=3     D=4     E=Whatever 



From Andrew Moore 

f(x,b) = sign(x.x-b) 



Generalization Error Bound: 
Infinite H, Non-Zero Training Error 

• Model and Learning Algorithm 

– Sample of n labeled examples Dtrain 

– Learning Algorithm A with a hypothesis space H with VCDim(H)=d 

– A returns hypothesis ĥ=A(S) with lowest training error  

• Given hypothesis space H with VCDim(H) equal to d and a training 

sample Dtrain of size n, with probability at least (1-  it holds that 

 

This slide is not relevant for exam. 


