Statistical Learning Theory

Why learning doesn't always work

- Unrealizability
 - f may not be in H or not easily represented in H
- Variance
 - There may be many ways to represent f
 - depends on the specific training set
- Noise/stochasticity
 - Elements that cannot be predicted: Missing attributes or stochastic process
- Complexity
 - Finding f may be intractable

Regularization

- Forcing solutions to be simple
 - Add penalty for complex models
 - E.g. accuracy + size of tree
 - Number of samples in Thin-KNN
 - Sum of weights or number of nonzero weights (number of connections) in NN
- Minimum Description Length (MDL)

Example: Smart Investing

Task: Pick stock analyst based on past performance. Experiment:

Have analyst predict "next day up/down" for 10 days.

Pick analyst that makes the fewest errors.

Situation 1:

– 1 stock analyst {A1}, A1 makes 5 errors
 Situation 2:

– 3 stock analysts {A1,B1,B2}, B2 best with 1 error
 Situation 3:

 1003 stock analysts {A1,B1,B2,C1,...,C1000}, C543 best with 0 errors

Which analysts are you most confident in: A1, B2, or C543?

Outline

Questions in Statistical Learning Theory:

- How good is the learned rule after *n* examples?
- How many examples do I need before the learned rule is accurate?
- What can be learned and what cannot?
- Is there a universally best learning algorithm?

In particular, we will address:

What is the true error of *h* if we only know the training error of *h*?

- Finite hypothesis spaces and zero training error
- (Finite hypothesis spaces and non-zero training error)

Game: Randomized 20-Questions

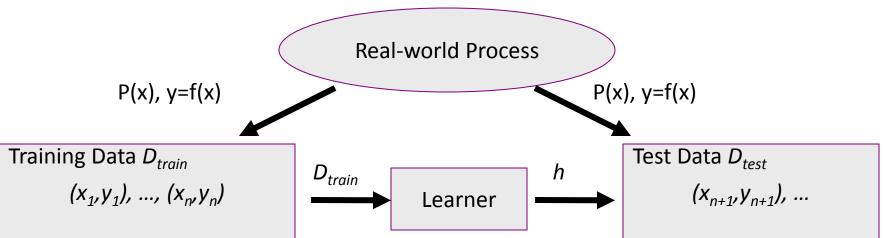
Game: 20-Questions

- I think of object f
- For *i* = 1 to 20
 - You get to ask 20 yes/no questions about *f* and I have to answer truthfully
- You make a guess h
- You win, if *f=h*

Game: Randomized 20-Questions

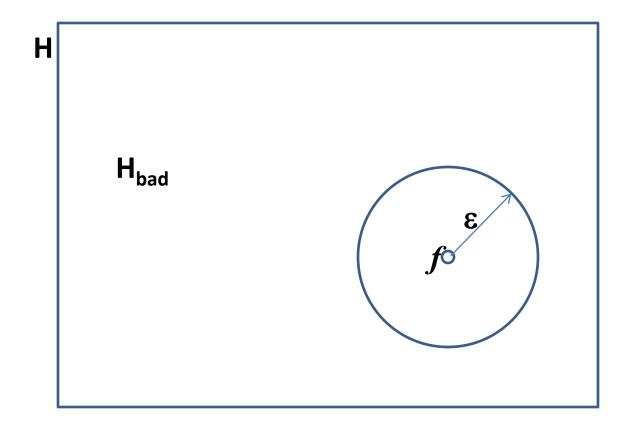
- I pick function $f \in H$, where f: $X \rightarrow \{-1,+1\}$
- For i = 1 to 20
 - World delivers instances x ∈ X with probability P(x) and I have to tell you f(x)
- You form hypothesis $h \in H$ trying to guess my $f \in H$
- You win if f(x)=h(x) with probability at least 1-ε for x drawn according to P(x).

Inductive Learning Model



- Probably Approximately Correct (PAC) Learning Model:
 - Take any function *f* from *H*
 - Draw *n* Training examples D_{train} from P(x), label as y=f(x)
 - Run learning algorithm on D_{train} to produce h from H
 - Gather Test Examples D_{test} from P(x)
 - Apply h to D_{test} and measure fraction (probability) of h(x) \neq f(x)
 - How likely is it that error probability is less than some threshold ϵ (for any f from H)?

What are the chances of a wrong hypothesis making correct predictions?



Useful Formulas

 Binomial Distribution: The probability of observing x heads in a sample of n independent coin tosses, where in each toss the probability of heads is p, is

$$P(X = x | p, n) = \frac{n!}{r!(n-x)!} p^x (1-p)^{n-x}$$

• Union Bound:

$$P(X_1 = x_1 \lor X_2 = x_2 \lor ... \lor X_n = x_n) \le \sum_{i=1}^n P(X_i = x_i)$$

• Unnamed:

$$(1-\epsilon) \leq e^{-\epsilon}$$

Chances of getting it wrong

- Chances that $h_b \in H_{bad}$ is consistent with N examples
 - ErrorRate(h_b)> ϵ so chances it agrees with an example is \leq (1- ϵ)
 - Chances it agrees with N examples \leq (1- $\epsilon)^{\text{N}}$
 - − P(H_{bad} contains a consistent hypothesis) = $|H_{bad}|$ (1- ε)^N ≤ |H| (1- ε)^N
 - We want to reduce this below some probability δ so |H| (1- $\epsilon)^{\sf N} \leq \delta$
 - Given (1- ε) $\leq e^{-\varepsilon}$ we get

$$N \ge \frac{1}{\varepsilon} \left(\ln \frac{1}{\delta} + \ln |H| \right)$$

Size of hypothesis space |H|

- How many possible Boolean functions are there on *n* binary attributes?
- A = n
- B = 2ⁿ
- $C = 2^{2n}$
- $D = 2^{2^n}$ • $E = 2^{2^{2^n}}$

Size of hypothesis space |H|

x1	x2	х3	Function
1	1	1	y ₀
1	1	0	Y ₁
1	0	1	y ₂
1	0	0	Y ₃
0	1	1	Y ₄
0	1	0	Y ₅
0	0	1	Y ₆
0	0	0	Y ₇

 $N=3 \rightarrow |H|=256$ $N=10 \rightarrow |H|=1.8 \times 10^{308}$

All Boolean functions

• If
$$|\mathbf{H}| = 2^{2^n}$$
 then
 $N \ge \frac{1}{\varepsilon} \left(\ln \frac{1}{\delta} + O(2^n) \right)$

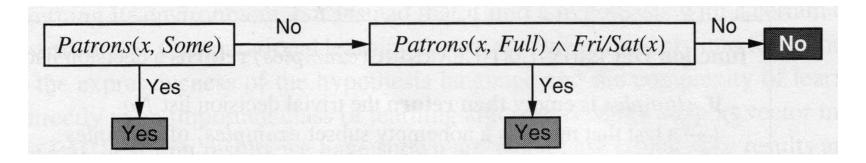
• So we need to see the entire space to determine the function reliably

Approach

- Look for simplest hypothesis
- Limit the size of |H| by only looking at simple (limited) subspace

Example: Decision lists

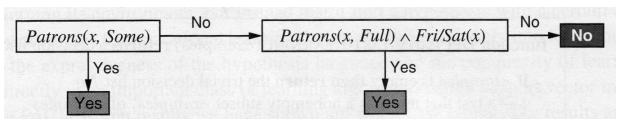
• List of tests, executed serially



- *k*-DL: Each test contains at most *k* literals
- Includes as a subset *k*-DT

All decision trees of depth at most k

Example: Decision lists



• Number of possible tests of size *k* from *n* attributes is

$$C(n,k) = \sum_{i=0}^{k} \binom{2n}{i} = O(n^k)$$

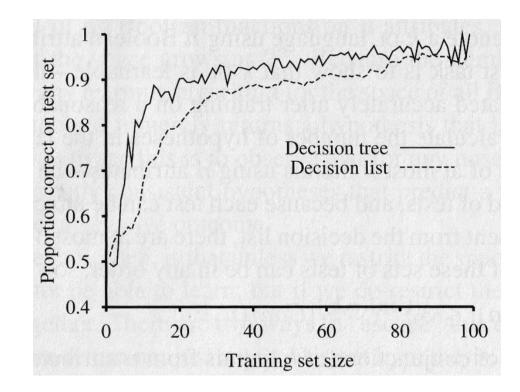
- Total size of hypothesis space |H| is
 - Each test can yield Yes, No, or be Absent
 - Tests can be ordered in any sequence

 $|kDL(n)| = 3^{C(n,k)}C(n,k)! \rightarrow |kDL(n)| = 2^{O(n^k \log_2 n^k)}$

• Therefore number of training samples is reasonable for small k $N \ge \frac{1}{\varepsilon} \left(\ln \frac{1}{\delta} + O(n^k \log_2 n^k) \right)$

Example: Decision lists

- Search for simple (small k) tests that classify large portion of data
- Add test to list, remove classified datapoints
- Repeat with remaining data



Inductive bias

- The inductive bias of a learning algorithm is the set of assumptions that the learner uses to predict outputs given inputs that it has not encountered (Mitchell, 1980)
 - No Free Lunch (Mitchell, Wolpert,...)
 - Bias-free learning is futile*

*Wolpert and Macready have proved that there are free lunches in <u>coevolutionary</u> optimization

Generalization Error Bound: Finite H, Zero Training Error

- Model and Learning Algorithm
 - Learning Algorithm A with a finite hypothesis space H
 - Sample of *n* labeled examples D_{train} drawn according to P(x)
 - Target function f ∈ H
 At least one h ∈ H has zero training error Err_{Dtrain}(h)
 Learning Algorithm A returns zero training error hypothesis h
- What is the probability δ that the true prediction error of $m{h}$ is larger than ${\cal E}$?

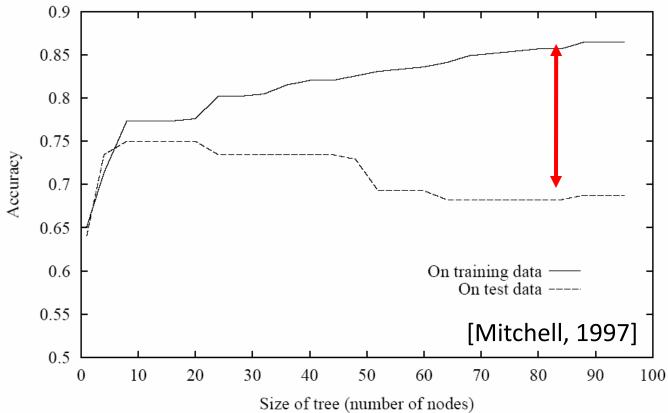
$$P(Err_P(\hat{h}) \ge \epsilon) \le |H|e^{-\epsilon n}$$

Generalization Error Bound: Finite H, Non-Zero Training Error

- Model and Learning Algorithm
 - Sample of *n* labeled examples *D*_{train}
 - Unknown (random) fraction of examples in D_{train} is mislabeled (noise)
 - Learning Algorithm A with a finite hypothesis space H
 - A returns hypothesis $\hat{h}=A(S)$ with lowest training error
- What is the probability δ that the prediction error of \hat{h} exceeds the fraction of training errors by more than \mathcal{E} ?

$$P\left(\left|Err_{D_{train}}(h_{\mathcal{A}(D_{train})}) - Err_{P}(h_{\mathcal{A}(D_{train})})\right| \ge \epsilon\right) \le 2|H|e^{-2\epsilon^{2}n}$$

Overfitting vs. Underfitting

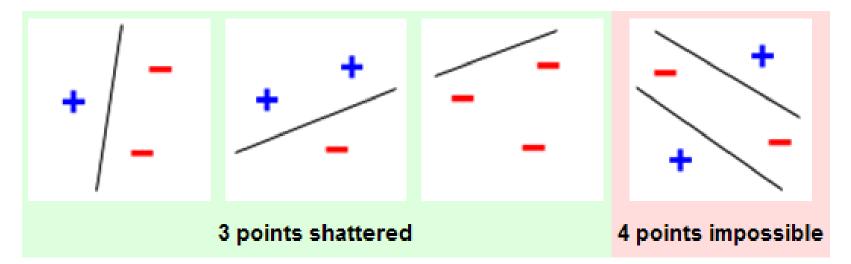


With probability at least $(1-\delta)$:

 $Err_P(h_{\mathcal{A}(D_{train})}) \leq Err_{D_{train}}(h_{\mathcal{A}(D_{train})}) + \sqrt{\frac{1}{2n}}(\ln(2|H|) - \ln(\delta))$

VC-Dimension

- The capacity of a hypothesis space H
 - The maximum number of points with arbitrary labelings that could be separated ("shattered")
 - VC dimension of linear classifiers is 3

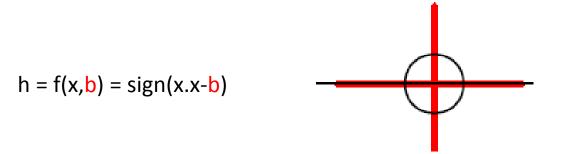


Representational power

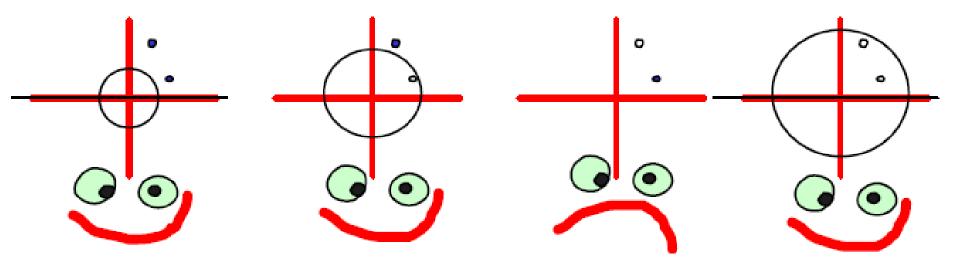
- Machine f can shatter a set of points x₁, x₂.. X_r if and only if...
 - For every possible training set of the form (x_1,y_1) , (x_2,y_2) ,... (x_r,y_r) ...There exists some value of a that gets zero training error.

Representational power

• What is the VC dimension of the hypothesis space of all circles centered at the origin?



A=1 B=2 C=3 D=4 E=Whatever



f(x,b) = sign(x.x-b)

From Andrew Moore

Generalization Error Bound: Infinite H, Non-Zero Training Error

- Model and Learning Algorithm
 - Sample of *n* labeled examples *D*_{train}
 - Learning Algorithm A with a hypothesis space H with VCDim(H)=d
 - A returns hypothesis $\hat{h}=A(S)$ with lowest training error
- Given hypothesis space H with VCDim(H) equal to d and a training sample D_{train} of size n, with probability at least $(1-\delta)$ it holds that

$$Err_P(h_{\mathcal{A}(D_{train})}) \leq Err_{D_{train}}(h_{\mathcal{A}(D_{train})}) + \sqrt{\frac{d\left(\ln\frac{2n}{d}+1\right) - \ln\frac{\delta}{4}}{n}}$$

This slide is not relevant for exam.