Statistical Learning Theory



Why learning doesn’t always work

Unrealizability
— f may not be in H or not easily represented in H

Variance
— There may be many ways to represent f
— depends on the specific training set

Noise/stochasticity

— Elements that cannot be predicted: Missing attributes
or stochastic process

Complexity
— Finding f may be intractable



Regularization

* Forcing solutions to be simple
— Add penalty for complex models
— E.g. accuracy + size of tree
— Number of samples in Thin-KNN

— Sum of weights or number of nonzero weights
(number of connections) in NN

 Minimum Description Length (MDL)



Example: Smart Investing

Task: Pick stock analyst based on past performance.
Experiment:

— Have analyst predict “next day up/down” for 10 days.
— Pick analyst that makes the fewest errors.

Situation 1:

— 1 stock analyst {A1}, A1 makes 5 errors
Situation 2:

— 3 stock analysts {A1,B1,B2}, B2 best with 1 error
Situation 3:

— 1003 stock analysts {A1,B1,B2,C1,...,C1000},
C543 best with O errors

Which analysts are you most confident in:
Al, B2, or C543?



Outline

Questions in Statistical Learning Theory:
— How good is the learned rule after n examples?
— How many examples do | need before the learned rule is accurate?
— What can be learned and what cannot?
— Is there a universally best learning algorithm?

In particular, we will address:
What is the true error of h if we only know the training error of h?
— Finite hypothesis spaces and zero training error
— (Finite hypothesis spaces and non-zero training error)



Game: Randomized 20-Questions

Game:

20-Questions
| think of object f

Fori=1to 20

* You get to ask 20 yes/no questions about f and | have to answer
truthfully

You make a guess h

You win, if f=h

Randomized 20-Questions

| pick function f € H, where f: X 2 {-1,+1}

Fori=11to 20
* World delivers instances x € X with probability P(x) and | have to tell
you f(x)
You form hypothesis h € H trying to guess my f € H

You win if f(x)=h(x) with probability at least 1-¢ for x drawn
according to P(x).



Inductive Learning Model

L

Training Data D

train D

h
(X1/y1)/ ooy (Xn/yn) — Learner —

Real-world Process
P(x), y=f(x)

Test Data D

test

(Xn+1l yn+1)/ oo

* Probably Approximately Correct (PAC) Learning Model:

— Take any function f from H

— Draw n Training examples D,, ..
— Run learning algorithm on D
— Gather Test Examples D
— Applyhto D

train

oo from P(x)

tes

from P(x), label as y=f(x)
to produce h from H

.and measure fraction (probability) of h(x)#f(x)

— How likely is it that error probability is less than some

threshold € (for any f from H)?




What are the chances of a wrong
hypothesis making correct predictions?

Hbad




Useful Formulas

* Binomial Distribution: The probability of
observing x heads in a sample of n independent
coin tosses, where in each toss the probability of
heads is p, is

P(X = z|p,n) = 5= CU).pm(l —p)"
 Union Bound:

n
1=1

* Unnamed:

(1-e)<e™"



Chances of getting it wrong

* Chances that h,eH,_, is consistent with N
examples

— ErrorRate(h,)>¢ so chances it agrees with an example is < (1- )

— Chances it agrees with N examples < (1- g)N

— P(H,,4 contains a consistent hypothesis) = |H, 4| (1- )N < [H] (1- g)N
— We want to reduce this below some probability d so |[H| (1-g)N< 6
— Given (1- g)<e® we get

N 23 In£+ln\H\
g %)



Size of hypothesis space |H]|

How many possible Boolean functions are
there on n binary attributes?

A=n
B =2
C=27
D=92
F=02"



Size of hypothesis space |H]|

1 1 1

1 1 0 2
1 0 1 Y,
1 0 0 Y5
0 1 1 Y,
0 1 0 Ys
0 0 1 Yo
0 0 0 Y

~N

N=3 > |H|=256 N=10->|H|=1.8x10308



All Boolean functions
_ A2
e If |[H|=2“ then

1(, 1 n
N z;(lngm(z )j

* So we need to see the entire space to
determine the function reliably



Approach

* Look for simplest hypothesis

e Limit the size of |H| by only looking at simple
(limited) subspace



Example: Decision lists

 List of tests, executed serially

Patrons(x, Some)

No

Yes

— R

Patrons(x, Full) A Fri/Sat(x)

Nom

Yes

e k-DL: Each test contains at most k literals

* Includes as a subset k-DT

— All decision trees of depth at most k



Example: Decision lists

No No
Patrons(x, Some) —— | Patrons(x, Full) A Fri/Sat(x) m

Yes

* Number of possible tests of size k from n attributes is
K (2n
C(n,k) = =0Oln"
(k) Z[ i ] (n*)

* Total size of hypothesis space |H| is
— Each test can yield Yes, No, or be Absent
— Tests can be ordered in any sequence

kDL(n)| =3°"C(n,k)! > [kDL(n)| = 200" 1o%™
* Therefore number of training samples is reasonable for

small k
N > E(In%+0(nk log, nk)j
E



Example: Decision lists

* Search for simple (small k) tests that classify large portion of data
* Add test to list, remove classified datapoints
* Repeat with remaining data

; Decision tree

Proportion correct on test set

0.7 / Decision list ---=----

06 1]/

0.5 {

0.4 : ! ; : _
0 20 40 60 80 100

Training set size






Inductive bias

* The inductive bias of a learning algorithm is
the set of assumptions that the learner uses
to predict outputs given inputs that it has not
encountered (Mitchell, 1980)

— No Free Lunch (Mitchell, Wolpert,...)
— Bias-free learning is futile*®

*Wolpert and Macready have proved that there are free
lunches in coevolutionary optimization



http://en.wikipedia.org/wiki/Coevolution

Generalization Error Bound:
Finite H, Zero Training Error

Model and Learning Algorithm
— Learning Algorithm A with a finite hypothesis space H

— Sample of n labeled examples D.._. drawn according to P(x)

train

— Target function f eH
=>» At least one h € H has zero training error Eertmm(h)

— Learning Algorithm A returns zero training error hypothesis h

What is the probability & that the true prediction error of h is larger
than &7

P(Errp(h) > ¢€) < |H|e™"



Generalization Error Bound:
Finite H, Non-Zero Training Error

* Model and Learning Algorithm
— Sample of n labeled examples D

train

— Unknown (random) fraction of examples in D, . is mislabeled (noise)

— Learning Algorithm A with a finite hypothesis space H

train

— A returns hypothesis h=A(5) with lowest training error

* What is the probability 6 that the prediction error of N exceeds the

fraction of training errors by more than 6'?

—2e2n
P <|ETTDtrain(h~A(Dtrain)) - ETTP(hA(Dtrain))‘ Z €> S 2|H|€



Overfitting vs. Underfitting
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[Mitchell, 1997]
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With probability at least (1-9):

1
Errp(ha(p,:)) < ETTDy0in (P A(D, ) T \/%(In(2|HD —1In(4))



VC-Dimension
* The capacity of a hypothesis space H

— The maximum number of points with arbitrary
labelings that could be separated (“shattered”)

— VC dimension of linear classifiers is 3

3 points shattered 4 points impossible



Representational power

* Machine f can shatter a set of points x;, x, .. X,
if and only if...
— For every possible training set of the form (x,,y,),

(X5,Y5) ,--- (X, ,Y,)...There exists some value of a that
gets zero training error.



Representational power

* What is the VC dimension of the hypothesis
space of all circles centered at the origin?

h =f(x,b) = sign(x.x-b)

A=1 B=2 C=3 D=4 E=Whatever
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Generalization Error Bound:
Infinite H, Non-Zero Training Error

Model and Learning Algorithm
— Sample of n labeled examples D,,;,
— Learning Algorithm A with a hypothesis space H with VCDim(H)=d

— A returns hypothesis h=A(S) with lowest training error

Given hypothesis space H with VCDim(H) equal to d and a training

sample D,, .. of size n, with probability at least (1-6) it holds that

train

d(In2t4+1)—Ing

n

ETTP(hA(Dtrain)) S ETTDtrain(hA(Dtrain)) _l_ \l

This slide is not relevant for exam.




