
Reinforcement Learning

Reinforcement Learning
• Assumptions we made so far:

– Known state space S
– Known transition model T(s, a, s’)
– Known reward function R(s)
not realistic for many real agents

Reinforcement Learning:

– Learn optimal policy with a priori unknown
environment

– Assume fully observable state(i.e. agent can tell its
state)

– Agent needs to explore environment (i.e.
experimentation)

Passive Reinforcement Learning
• Task: Given a policy π, what is the utility function Uπ ?

– Similar to Policy Evaluation, but unknown T(s, a, s’) and
R(s)

Approach: Agent experiments in the environment
– Trials: execute policy from start state until in terminal

state.
 (1,1)-0.04 (1,2)-0.04
 (1,3)-0.04 (1,2)-0.04
 (1,3)-0.04 (2,3)-0.04
 (3,3)-0.04 (4,3)1.0

 (1,1)-0.04 (1,2)-0.04
 (1,3)-0.04 (2,3)-0.04
 (3,3)-0.04 (3,2)-0.04
 (3,3)-0.04 (4,3)1.0

 (1,1)-0.04 (2,1)-0.04
 (3,1)-0.04 (3,2)-0.04
 (4,2)-1.0

Direct Utility Estimation

• Data: Trials of the form
– (1,1)-0.04 (1,2)-0.04 (1,3)-0.04 (1,2)-0.04 (1,3)-0.04
 (2,3)-0.04 (3,3)-0.04 (4,3)1.0

– (1,1)-0.04 (1,2)-0.04 (1,3)-0.04 (2,3)-0.04 (3,3)-0.04
 (3,2)-0.04 (3,3)-0.04 (4,3)1.0

– (1,1)-0.04 (2,1)-0.04 (3,1)-0.04 (3,2)-0.04 (4,2)-1.0

• Idea:

– Average reward over all trials for each state
independently

– From data above, estimate U(1,1)

– A=0.72 B= -1.16 C=0.28 D=0.55

Direct Utility Estimation

• Data: Trials of the form
– (1,1)-0.04 (1,2)-0.04 (1,3)-0.04 (1,2)-0.04 (1,3)-0.04
 (2,3)-0.04 (3,3)-0.04 (4,3)1.0

– (1,1)-0.04 (1,2)-0.04 (1,3)-0.04 (2,3)-0.04 (3,3)-0.04
 (3,2)-0.04 (3,3)-0.04 (4,3)1.0

– (1,1)-0.04 (2,1)-0.04 (3,1)-0.04 (3,2)-0.04 (4,2)-1.0

• Idea:

– Average reward over all trials for each state
independently

– From data above, estimate U(1,2)

– A=0.76 B= 0.77 C=0.78 D=0.79

Direct Utility Estimation

• Why is this less efficient than necessary?

 Ignores dependencies between states
 Uπ(s) = R(s) + γ Σs’ T(s, π(s), s’) Uπ(s’)

• Idea:

– Run trials to learn model of environment (i.e. T and R)

• Memorize R(s) for all visited states

• Estimate fraction of times action a from state s leads to s’

– Use PolicyEvaluation Algorithm on estimated model

• Data: Trials of the form

– (1,1)-0.04 (1,2)-0.04 (1,3)-0.04 (1,2)-0.04 (1,3)-0.04

 (2,3)-0.04 (3,3)-0.04 (4,3)1.0

– (1,1)-0.04 (1,2)-0.04 (1,3)-0.04 (2,3)-0.04 (3,3)-0.04

 (3,2)-0.04 (3,3)-0.04 (4,3)1.0

– (1,1)-0.04 (2,1)-0.04 (3,1)-0.04 (3,2)-0.04 (4,2)-1.0

•Adaptive Dynamic Programming (ADP)

ADP

– (1,1)-0.04 (1,2)-0.04 (1,3)-0.04 (1,2)-0.04
(1,3)-0.04 (2,3)-0.04 (3,3)-0.04 (4,3)1.0

– (1,1)-0.04 (1,2)-0.04 (1,3)-0.04 (2,3)-0.04
(3,3)-0.04 (3,2)-0.04 (3,3)-0.04 (4,3)1.0

– (1,1)-0.04 (2,1)-0.04 (3,1)-0.04 (3,2)-0.04
(4,2)-1.0

Estimate T[(1,3), right, (2,3)]

A=0 B=0.333 C=0.666 D=1.0

• Problem?

• Can be quite costly for large state spaces

• For example, Backgammon has 1050 states

 Learn and store all transition probabilities and rewards

 PolicyEvaluation needs to solve linear program with 1050 equations and
variables.

Temporal Difference (TD) Learning

• If policy led U(1,3) to U(2,3) all the time, we
would expect that
• Uπ(1,3) = -0.04 + Uπ(2,3)

• R(s) should be equal Uπ(s) - γ Uπ(s’), so

• Uπ(s) = Uπ(s) + α [R(s) + γ Uπ(s’) - Uπ(s)]
– α is learning rate. α should decrease slowly

over time, so that estimates stabilize
eventually.

From observation,
U(1,3)=0.84 U(2,3)=0.92
And R = -0.04

Is U(1,3) too low or too high?

A=Too Low B=Too high

Temporal Difference (TD) Learning
• Idea:

– Do not learn explicit model of environment!
– Use update rule that implicitly reflects transition

probabilities.
• Method:

– Init Uπ(s) with R(s) when first visited
– After each transition, update with

 Uπ(s) = Uπ(s) + α [R(s) + γ Uπ(s’) - Uπ(s)]
– α is learning rate. α should decrease slowly over

time, so that estimates stabilize eventually.
• Properties:

– No need to store model
– Only one update for each action (not full

PolicyEvaluation)

Active Reinforcement Learning
• Task: In an a priori unknown environment, find

the optimal policy.
– unknown T(s, a, s’) and R(s)
– Agent must experiment with the environment.

• Naïve Approach: “Naïve Active PolicyIteration”
– Start with some random policy
– Follow policy to learn model of environment and

use ADP to estimate utilities.
– Update policy using π(s) argmaxa Σs’ T(s, a, s’) Uπ(s’)

• Problem:
– Can converge to sub-optimal policy!
– By following policy, agent might never learn T and

R everywhere.
 Need for exploration!

Exploration vs. Exploitation
• Exploration:

– Take actions that explore the environment
– Hope: possibly find areas in the state space of

higher reward
– Problem: possibly take suboptimal steps

• Exploitation:
– Follow current policy
– Guaranteed to get certain

expected reward
• Approach:

– Sometimes take rand
steps

– Bonus reward for states
that have not been visited
often yet

?

?

Q-Learning
• Problem: Agent needs model of environment to

select action via
 argmaxa Σs’ T(s, a, s’) Uπ(s’)

• Solution: Learn action utility function Q(a,s), not
state utility function U(s). Define Q(a,s) as

 U(s) = maxa Q(a,s)
Bellman equation with Q(a,s) instead of U(s)

 Q(a,s) = R(s) + γ Σs’ T(s, a, s’) maxa’ Q(a’,s’)

TD-Update with Q(a,s) instead of U(s)
 Q(a,s) Q(a,s) + α [R(s) + γ maxa’ Q(a’,s’) - Q(a,s)]

• Result: With Q-function, agent can select action
without model of environment

 argmaxa Q(a,s)

Q-Learning Illustration

Q(up,(1,1))
Q(right,(1,1))
Q(down,(1,1))
Q(left,(1,1))

Q(up,(1,2))
Q(right,(1,2))
Q(down,(1,2))
Q(left,(1,2))

Q(up,(2,1))
Q(right,(2,1))
Q(down,(2,1))
Q(left,(2,1))

Function Approximation
• Problem:

– Storing Q or U,T,R for each state in a table is too
expensive, if number of states is large

– Does not exploit “similarity” of states (i.e. agent
has to learn separate behavior for each state, even
if states are similar)

• Solution:
– Approximate function using parametric

representation
– For example:

• Ф(s) is feature vector describing the state
– “Material values” of board
– Is the queen threatened?
– …

Servo

Actuators

Tilt Sensors

Morphological Estimation

Emergent Self-Model

With Josh Bongard and Victor Zykov, Science 2006

Damage Recovery

With Josh Bongard and Victor Zykov, Science 2006

Random

Predicted

Physical

