
Reinforcement Learning 



Reinforcement Learning 
• Assumptions we made so far: 

– Known state space S 
– Known transition model T(s, a, s’)  
– Known reward function R(s) 
not realistic for many real agents 

 
Reinforcement Learning: 

– Learn optimal policy with a priori unknown 
environment 

– Assume fully observable state(i.e. agent can tell its 
state) 

– Agent needs to explore environment (i.e. 
experimentation) 



Passive Reinforcement Learning 
• Task: Given a policy π, what is the utility function Uπ ? 

– Similar to Policy Evaluation, but unknown T(s, a, s’) and 
R(s)  

Approach: Agent experiments in the environment 
– Trials: execute policy from start state until in terminal 

state. 
      (1,1)-0.04  (1,2)-0.04  
 (1,3)-0.04  (1,2)-0.04  
 (1,3)-0.04  (2,3)-0.04  
 (3,3)-0.04  (4,3)1.0  

      (1,1)-0.04  (1,2)-0.04  
 (1,3)-0.04  (2,3)-0.04  
 (3,3)-0.04  (3,2)-0.04  
 (3,3)-0.04  (4,3)1.0  

      (1,1)-0.04  (2,1)-0.04  
 (3,1)-0.04  (3,2)-0.04  
 (4,2)-1.0  



Direct Utility Estimation 

• Data: Trials of the form 
– (1,1)-0.04  (1,2)-0.04  (1,3)-0.04  (1,2)-0.04  (1,3)-0.04 
 (2,3)-0.04  (3,3)-0.04  (4,3)1.0  

– (1,1)-0.04  (1,2)-0.04  (1,3)-0.04  (2,3)-0.04  (3,3)-0.04 
 (3,2)-0.04  (3,3)-0.04  (4,3)1.0  

– (1,1)-0.04  (2,1)-0.04  (3,1)-0.04  (3,2)-0.04  (4,2)-1.0  

• Idea: 

– Average reward over all trials for each state 
independently 

– From data above, estimate U(1,1) 

– A=0.72     B= -1.16     C=0.28     D=0.55  



Direct Utility Estimation 

• Data: Trials of the form 
– (1,1)-0.04  (1,2)-0.04  (1,3)-0.04  (1,2)-0.04  (1,3)-0.04 
 (2,3)-0.04  (3,3)-0.04  (4,3)1.0  

– (1,1)-0.04  (1,2)-0.04  (1,3)-0.04  (2,3)-0.04  (3,3)-0.04 
 (3,2)-0.04  (3,3)-0.04  (4,3)1.0  

– (1,1)-0.04  (2,1)-0.04  (3,1)-0.04  (3,2)-0.04  (4,2)-1.0  

• Idea: 

– Average reward over all trials for each state 
independently 

– From data above, estimate U(1,2) 

– A=0.76     B= 0.77    C=0.78     D=0.79  



Direct Utility Estimation 

• Why is this less efficient than necessary? 

  Ignores dependencies between states 
 Uπ(s) = R(s) + γ Σs’ T(s, π(s), s’) Uπ(s’)  

 



• Idea:  

– Run trials to learn model of environment (i.e. T and R) 

• Memorize R(s) for all visited states 

• Estimate fraction of times action a from state s leads to s’ 

– Use PolicyEvaluation Algorithm on estimated model 

• Data: Trials of the form 

– (1,1)-0.04  (1,2)-0.04  (1,3)-0.04  (1,2)-0.04  (1,3)-0.04 

 (2,3)-0.04  (3,3)-0.04  (4,3)1.0  

– (1,1)-0.04  (1,2)-0.04  (1,3)-0.04  (2,3)-0.04  (3,3)-0.04 

 (3,2)-0.04  (3,3)-0.04  (4,3)1.0  

– (1,1)-0.04  (2,1)-0.04  (3,1)-0.04  (3,2)-0.04  (4,2)-1.0  

•Adaptive Dynamic Programming (ADP) 



ADP 

– (1,1)-0.04  (1,2)-0.04  (1,3)-0.04  (1,2)-0.04  
(1,3)-0.04  (2,3)-0.04  (3,3)-0.04  (4,3)1.0  

– (1,1)-0.04  (1,2)-0.04  (1,3)-0.04  (2,3)-0.04  
(3,3)-0.04  (3,2)-0.04  (3,3)-0.04  (4,3)1.0  

– (1,1)-0.04  (2,1)-0.04  (3,1)-0.04  (3,2)-0.04  
(4,2)-1.0  

 

Estimate T[(1,3), right, (2,3)] 

A=0  B=0.333  C=0.666  D=1.0 



• Problem? 

• Can be quite costly for large state spaces 

• For example, Backgammon has 1050 states  

 Learn and store all transition probabilities and rewards 

 PolicyEvaluation needs to solve linear program with 1050 equations and 
variables. 



Temporal Difference (TD) Learning 

• If policy led U(1,3) to U(2,3) all the time, we 
would expect that  
• Uπ(1,3) = -0.04 + Uπ(2,3) 

• R(s) should be equal Uπ(s)  - γ Uπ(s’), so 

• Uπ(s) = Uπ(s) + α [R(s) + γ Uπ(s’) - Uπ(s)]  
– α is learning rate. α should decrease slowly 

over  time, so that estimates stabilize 
eventually. 



From observation, 
U(1,3)=0.84  U(2,3)=0.92  
And R = -0.04  
 
Is U(1,3) too low or too high? 
 
A=Too Low    B=Too high 



Temporal Difference (TD) Learning 
• Idea:  

– Do not learn explicit model of environment! 
– Use update rule that implicitly reflects transition 

probabilities. 
• Method: 

– Init Uπ(s) with R(s) when first visited 
– After each transition, update with  

       Uπ(s) = Uπ(s) + α [R(s) + γ Uπ(s’) - Uπ(s)]  
– α is learning rate. α should decrease slowly over  

time, so that estimates stabilize eventually. 
• Properties: 

– No need to store model 
– Only one update for each action (not full  

PolicyEvaluation) 



Active Reinforcement Learning 
• Task: In an a priori unknown environment, find 

the optimal policy. 
– unknown T(s, a, s’) and R(s)  
– Agent must experiment with the environment. 

• Naïve Approach: “Naïve Active PolicyIteration” 
– Start with some random policy 
– Follow policy to learn model of environment and 

use ADP to estimate utilities. 
– Update policy using π(s)  argmaxa Σs’ T(s, a, s’) Uπ(s’)  

• Problem: 
– Can converge to sub-optimal policy! 
– By following policy, agent might never learn T and 

R everywhere. 
  Need for exploration! 



Exploration vs. Exploitation 
• Exploration: 

– Take actions that explore the environment 
– Hope: possibly find areas in the state space of 

higher reward 
– Problem: possibly take suboptimal steps 

• Exploitation: 
– Follow current policy 
– Guaranteed to get certain  

expected reward 
• Approach: 

– Sometimes take rand  
steps 

– Bonus reward for states  
that have not been visited  
often yet 

? 

? 



Q-Learning 
• Problem: Agent needs model of environment to 

select action via  
   argmaxa Σs’ T(s, a, s’) Uπ(s’)  

• Solution: Learn action utility function Q(a,s), not 
state utility function U(s). Define Q(a,s) as 

   U(s) = maxa Q(a,s) 
Bellman equation with Q(a,s) instead of U(s) 

  Q(a,s) = R(s) + γ Σs’ T(s, a, s’) maxa’ Q(a’,s’) 

TD-Update with Q(a,s) instead of U(s) 
  Q(a,s)  Q(a,s) + α [R(s) + γ maxa’ Q(a’,s’) - Q(a,s)] 

• Result: With Q-function, agent can select action 
without model of environment 

   argmaxa Q(a,s)  
 
 



Q-Learning Illustration 

Q(up,(1,1)) 
Q(right,(1,1)) 
Q(down,(1,1)) 
Q(left,(1,1)) 

Q(up,(1,2)) 
Q(right,(1,2)) 
Q(down,(1,2)) 
Q(left,(1,2)) 

Q(up,(2,1)) 
Q(right,(2,1)) 
Q(down,(2,1)) 
Q(left,(2,1)) 



Function Approximation 
• Problem: 

– Storing Q or U,T,R for each state in a table is too 
expensive, if number of states is large 

– Does not exploit “similarity” of states (i.e. agent 
has to learn separate behavior for each state, even 
if states are similar) 

• Solution: 
– Approximate function using parametric 

representation 
– For example: 

• Ф(s) is feature vector describing the state  
– “Material values” of board 
– Is the queen threatened? 
– … 

 



Servo 

Actuators 

Tilt Sensors 





Morphological Estimation 



Emergent Self-Model 

With Josh Bongard and Victor Zykov, Science 2006 



Damage Recovery 

With Josh Bongard and Victor Zykov, Science 2006 



Random 

Predicted 

Physical  


