
Policy Search

-0.04 -0.04 -0.04

-0.04

-0.04 -0.04 -0.04

-0.04

0.8

0.1 0.1

• move into desired
direction with prob 80%

• move 90 degrees to left
with prob 10%

• move 90 degrees to right
with prob 10%

-0.04 -0.04 -0.04

-0.04

-0.04 -0.04 -0.04

-0.04

What is the probability that [up, up, right, right, right] ends in (4,3)?

A=1 B=0.32768 C=0.32776 D=0.5

We still assume the problem is fully observable – the agent knows where it is and what the rewards are…

A Policy

Other representations?

• How can a policy be represented?

– An arrow for every grid cell

– What about a continuous world?

• Θ(x,y)

• NN

• C++ function

-0.04 -0.04 -0.04

-0.04

-0.04 -0.04 -0.04

-0.04

•R(s) is the short term reward in state s

•Uπ(s) is the long term reward when following policy π from state s

R(s)

Optimal Policies for Other Rewards

Markovian Model
• Model:

– Initial state: S0

– Transition function: T(s,a,s’)
 T(s,a,s’) is the probability of moving from state s to
s’ when executing action a.

– Reward function: R(s)
 Real valued reward that the agent receives for
entering state s.

• Assumptions
– Markov property: T(s,a,s’) and R(s) only depend on

current state s, but not on any states visited earlier.

– Extension: Function R may be non-deterministic as well

Markov Decision Process

• Representation of Environment:
– finite set of states S

– set of actions A for each state s in S

• Process
– At each discrete time step, the agent

• observes state st in S and then

• chooses action at in A.

– After that, the environment
• gives agent an immediate reward rt

• changes state to st+1 (can be probabilistic)

Utilities

• Rating a state sequence [s0, s1, s2, …+

– U([s0,…,sN]) = Σi R(si)

– Additive rewards:

• Uh([s0, s1, s2, …+) = R(s0) + R(s1) + R(s2) + …

– We want preferences to be stationary

– If [s0, s1, s2, …+ better than *s0, s’1, s’2, …+ implies
[s1, s2, …+ better than *s’1, s’2, …+

• Reward vs. Utility

Discounted Utility

• Problem:
– What happens to utility value when

• either the state space has no terminal states

• or the policy never directs the agent to a terminal state

  Utility becomes infinite

• Solution
– Use discounted utility
 closer rewards count more than awards far in the
future

  finite utility even for infinite state sequences

 U([s0,…,sN]) = Σi γ
i R(si) ≤ Σi γ

i Rmax = Rmax / (1 – γ)

Policy
• Definition:

– A policy π describes which
action an agent should select in
each state

– a=π(s)

• Utility of a policy
– For now additive utility
– Let P([s0,…,sN] | π, s0) be the probability of state

sequence [s0,…,sN] when following policy π from state s0

– Expected utility: Uπ(s) = Σ U([s0,…,sN]) P([s0,…,sN] | π, s0)
 measure of quality of policy π

– Optimal policy π*: Policy with maximal Uπ(s) in each
state s

Utility  Policy

• Equivalence:
– If we know the utility U(s) of each state, we can

derive the correseponding policy:

 π*(s) = argmaxa Σs’ T(s, a, s’) U(s’)

– If we know the policy π, we can compute the
corresponsing utility of each state:

 PolicyEvaluation algorithm
Bellman Equation:

 U(s) = R(s) + γ maxa Σs’ T(s, a, s’) U(s’)

Optimal Utility  Optimal Policy

How to Compute the Utility for a given Policy?

• Definition:

• Uπ(s) = Σ [Σi γ
i R(si)] P([s0, s1,…+ | π, s0=s)

• Recursive computation:

– Uπ(s) = R(s) + γ Σs’ T(s, π(s), s’) Uπ(s’)

– What is P([s0, s1,…+ | π)?

– P([s0, s1,…+ | π) = T(s0, π(s0), s1) * T(s1, π(s1), s2) * …

Utility of path Likelihood of path

0 0 0

0

0 0 0

0

•Uπ((3,3))  -0.04 + 0.8 * 1 + 0.1 * 0 + 0.1 * 0 = 0.76

R(s)= -0.04 everywhere except goals

0 0 0

0

0 0 0.76

?

•Uπ((3,2)) = ? A= -0.04 B=0.312 C=0.428 D=0.468

0 0 0

0

0 0

0.468

?

•Uπ((3,3)) = ? A= -0.04 B=0.760 C=0.883 D=0.885

Uπ(s) = R(s) + γ Σs’ T(s, π(s), s’) Uπ(s’)

Here: γ=1.0, R(s)=-0.04

Convergence

Bellman Update
• Goal: Solve set of n=|S| equations (one for each

state) Uπ(s0) = R(s0) + γ Σs’ T(s0, π(s), s’) Uπ(s’)
 …
 Uπ(sn) = R(sn) + γ Σs’ T(sn, π(s), s’) Uπ(s’)

• Is this a set of linear equations? Why or why not?

• Algorithm [Policy Evaluation] (fix π):
– i=0; Uπ

0(s)=0 for all s
– repeat

• i = i +1
• for each state s in S do

– Uπ
i(s) = R(s) + γ Σs’ T(s, π(s), s’) Uπ

i-1(s’)

• endfor

– until difference between Uπ
i and Uπ

i-1 small enough
– return Uπ

i

How to Find the Optimal Policy π*?

• Is policy π optimal? How can we tell?

– If π is not optimal, then there exists some state where
 π(s) ≠ argmaxa Σs’ T(s, a, s’) Uπ(s’)

– How to find the optimal policy π*?

How to Find the Optimal Policy π*?

• Algorithm [Policy Iteration]:

– repeat

• Uπ = PolicyEvaluation(π,S,T,R)

• for each state s in S do

– If [maxa Σs’ T(s, a, s’) Uπ(s’) > Σs’ T(s, π(s), s’) Uπ(s’)] then

» π(s) = argmaxa Σs’ T(s, a, s’) Uπ(s’)

• endfor

– until π does not change any more

– return π

Value Iteration

• Optimal Utility  Optimal Policy

• Find optimal utility directly

1 -2 5

7 6

3 6 5

A B C D

What is the best utility possible for the center?

?

Value Iteration

• Optimal Utility  Optimal Policy

• Find optimal utility directly

1 -2 5

7 6

3 6 5

1 -2 5

7 6

3 6 5

1 -2 5

7 6

3 6 5

1 -2 5

7 6

3 6 5

-0.04 + 0.8*-2 + 0.1*7 + 0.1*6
=-0.34

-0.04 + 0.8*7 + 0.1*-2 + 0.1*6
=5.96

-0.04 + 0.8*6 + 0.1*7 + 0.1*6
=6.06

-0.04 + 0.8*6 + 0.1*6 + 0.1*-2
=5.16

Value Iteration Algorithm

• Algorithm [Value Iteration]:
– i=0; U0(s)=0 for all s

– repeat
• i = i +1

• for each state s in S do
– Ui(s) = R(s) + γ maxa Σs’ T(s, a, s’) Ui-1(s’)

• endfor

– until difference between Ui and Ui-1 small enough

– return Ui

 derive optimal policy via π*(s) = argmaxa Σs’ T(s, a, s’) U(s’)

Two approaches to finding π*

• Policy Iteration
– Local search: Start with random policy

– Evaluate a candidate policy using bellman update

– Uπ(s0) = R(s0) + γ Σs’ T(s0, π(s), s’) Uπ(s’)

– Linear set of equations

– Confirm policy is optimal or make changes

• Value Iteration
– find optimal utilities by iteratively solving

• Ui(s) = R(s) + γ maxa Σs’ T(s, a, s’) Ui-1(s’)

– Derive optimal policy to follow optimal utilities

Convergence of Value Iteration

• Value iteration is guaranteed to converge to optimal U for 0 ≤ γ < 1

• Faster convergence for smaller γ

• Guaranteed to reach equilibrium (see textbook)

