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• move into desired 
direction with prob 80% 

• move 90 degrees to left 
with prob 10% 

• move 90 degrees to right 
with prob 10% 
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What is the probability that [up, up, right, right, right] ends in (4,3)? 

A=1     B=0.32768     C=0.32776     D=0.5 

We still assume the problem is fully observable – the agent knows where it is and what the rewards are… 



A Policy 



Other representations? 

• How can a policy be represented? 

– An arrow for every grid cell 

– What about a continuous world? 

• Θ(x,y) 

• NN 

• C++ function 
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•R(s) is the short term reward in state s 

•Uπ(s) is the long term reward when following policy π from state s 

R(s)  



Optimal Policies for Other Rewards 



Markovian Model 
• Model:   

– Initial state: S0 

– Transition function: T(s,a,s’)  
 T(s,a,s’) is the probability of moving from state s to 
s’ when executing action a. 

– Reward function: R(s) 
 Real valued reward that the agent receives for 
entering state s. 

• Assumptions 
– Markov property: T(s,a,s’) and R(s) only depend on 

current state s, but not on any states visited earlier. 

– Extension: Function R may be non-deterministic as well  



Markov Decision Process 

• Representation of Environment: 
– finite set of states S 

– set of actions A for each state s in S 

• Process 
– At each discrete time step, the agent  

• observes state st in S and then 

• chooses action at in A. 

– After that, the environment 
• gives agent an immediate reward rt 

• changes state to st+1 (can be probabilistic) 



Utilities 

• Rating a state sequence [s0, s1, s2, …+ 

– U([s0,…,sN]) = Σi R(si)  

– Additive rewards:  

• Uh([s0, s1, s2, …+ ) = R(s0) + R(s1) + R(s2) + … 

– We want preferences to be stationary 

– If [s0, s1, s2, …+ better than *s0, s’1, s’2, …+ implies             
[s1, s2, …+ better than *s’1, s’2, …+ 

• Reward vs. Utility 

 



Discounted Utility 

• Problem: 
– What happens to utility value when 

• either the state space has no terminal states 

• or the policy never directs the agent to a terminal state 

  Utility becomes infinite 

• Solution 
– Use discounted utility  
 closer rewards count more than awards far in the 
future 

  finite utility even for infinite state sequences 

  U([s0,…,sN]) = Σi γ
i R(si) ≤ Σi γ

i Rmax =  Rmax / (1 – γ)  

 

 



Policy 
• Definition: 

– A policy π describes which 
action an agent should select in 
each state 

– a=π(s) 

• Utility of a policy 
– For now additive utility 
– Let P([s0,…,sN] | π, s0) be the probability of state 

sequence [s0,…,sN] when following policy π from state s0 

– Expected utility: Uπ(s) = Σ U([s0,…,sN]) P([s0,…,sN] | π, s0) 
 measure of quality of policy π 

– Optimal policy π*: Policy with maximal Uπ(s) in each 
state s 



Utility  Policy 

• Equivalence: 
– If we know the utility U(s) of each state, we can 

derive the correseponding policy: 

   π*(s) = argmaxa Σs’ T(s, a, s’) U(s’) 

– If we know the policy π, we can compute the 
corresponsing utility of each state: 

   PolicyEvaluation algorithm 
Bellman Equation: 

  U(s) = R(s) + γ maxa Σs’ T(s, a, s’) U(s’)  

Optimal Utility  Optimal Policy 



How to Compute the Utility for a given Policy? 

• Definition:  

• Uπ(s) = Σ [ Σi γ
i R(si) ] P([s0, s1,…+ | π, s0=s) 

• Recursive computation: 

– Uπ(s) = R(s) + γ Σs’ T(s, π(s), s’) Uπ(s’)  

– What is P([s0, s1,…+ | π)? 

– P([s0, s1,…+ | π) = T(s0, π(s0), s1) * T(s1, π(s1), s2) * … 

 

Utility of path Likelihood of path 
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•Uπ((3,3))  -0.04 + 0.8 * 1 + 0.1 * 0 + 0.1 * 0 = 0.76 

R(s)= -0.04 everywhere except goals 
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•Uπ((3,2)) = ?     A= -0.04     B=0.312     C=0.428       D=0.468  



0 0 0 

0 

0 0 

0.468 
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•Uπ((3,3)) = ?     A= -0.04     B=0.760     C=0.883       D=0.885 



Uπ(s) = R(s) + γ Σs’ T(s, π(s), s’) Uπ(s’)  

 

Here: γ=1.0, R(s)=-0.04 

Convergence 



Bellman Update 
• Goal: Solve set of n=|S| equations (one for each 

state)    Uπ(s0) = R(s0) + γ Σs’ T(s0, π(s), s’) Uπ(s’)  
    … 
   Uπ(sn) = R(sn) + γ Σs’ T(sn, π(s), s’) Uπ(s’)  

• Is this a set of linear equations?  Why or why not? 
 

• Algorithm [Policy Evaluation] (fix π): 
– i=0; Uπ

0(s)=0 for all s 
– repeat 

• i = i +1 
• for each state s in S do 

– Uπ
i(s) = R(s) + γ Σs’ T(s, π(s), s’) Uπ

i-1(s’)  

• endfor 

– until difference between Uπ
i and Uπ

i-1 small enough 
– return Uπ

i 

 



How to Find the Optimal Policy π*? 

• Is policy π optimal? How can we tell? 

– If π is not optimal, then there exists some state where 
   π(s) ≠ argmaxa Σs’ T(s, a, s’) Uπ(s’)  

– How to find the optimal policy π*? 



How to Find the Optimal Policy π*? 

• Algorithm [Policy Iteration]: 

– repeat 

• Uπ = PolicyEvaluation(π,S,T,R) 

• for each state s in S do 

– If [ maxa Σs’ T(s, a, s’) Uπ(s’)  > Σs’ T(s, π(s), s’) Uπ(s’) ] then 

» π(s) = argmaxa Σs’ T(s, a, s’) Uπ(s’)  

• endfor 

– until π does not change any more 

– return π 



Value Iteration 

• Optimal Utility  Optimal Policy 

• Find optimal utility directly 
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What is the best utility possible for the center? 

? 



Value Iteration 

• Optimal Utility  Optimal Policy 

• Find optimal utility directly 
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-0.04 + 0.8*-2 + 0.1*7 + 0.1*6 
=-0.34 

-0.04 + 0.8*7 + 0.1*-2 + 0.1*6 
=5.96 

-0.04 + 0.8*6 + 0.1*7 + 0.1*6 
=6.06 

-0.04 + 0.8*6 + 0.1*6 + 0.1*-2 
=5.16 



Value Iteration Algorithm 

• Algorithm [Value Iteration]: 
– i=0; U0(s)=0 for all s 

– repeat 
• i = i +1 

• for each state s in S do 
– Ui(s) = R(s) + γ maxa Σs’ T(s, a, s’) Ui-1(s’)  

• endfor 

– until difference between Ui and Ui-1 small enough 

– return Ui 

 

 derive optimal policy via π*(s) = argmaxa Σs’ T(s, a, s’) U(s’) 

 



Two approaches to finding π* 

• Policy Iteration 
– Local search: Start with random policy 

– Evaluate a candidate policy using bellman update 

– Uπ(s0) = R(s0) + γ Σs’ T(s0, π(s), s’) Uπ(s’) 

– Linear set of equations 

– Confirm policy is optimal or make changes 

• Value Iteration 
– find optimal utilities by iteratively solving 

• Ui(s) = R(s) + γ maxa Σs’ T(s, a, s’) Ui-1(s’)  

– Derive optimal policy to follow optimal utilities 

 

 

 



Convergence of Value Iteration 

• Value iteration is guaranteed to converge to optimal U for 0 ≤ γ < 1 

• Faster convergence for smaller γ 

• Guaranteed to reach equilibrium (see textbook) 


