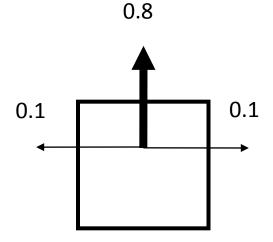
Policy Search

3	-0.04	-0.04	-0.04	+1
2	-0.04		-0.04	- 1
1	START	-0.04	-0.04	-0.04

1 2 3 4

3	-0.04	-0.04	-0.04	+1
2	-0.04		-0.04	-1
1	START	-0.04	-0.04	-0.04
	1	2	3	4



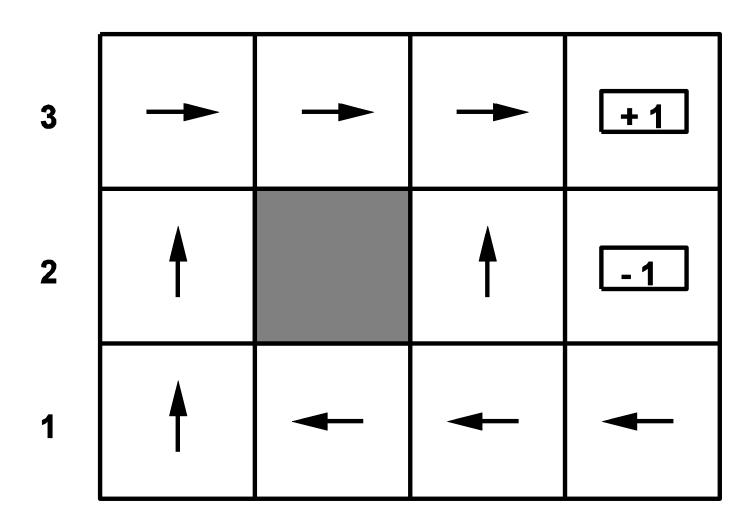
- move into desired direction with prob 80%
- move 90 degrees to left with prob 10%
- move 90 degrees to right with prob 10%

What is the probability that [up, up, right, right, right] ends in (4,3)?

A=1 B=0.32768 C=0.32776 D=0.5

We still assume the problem is fully observable – the agent knows where it is and what the rewards are...

A Policy



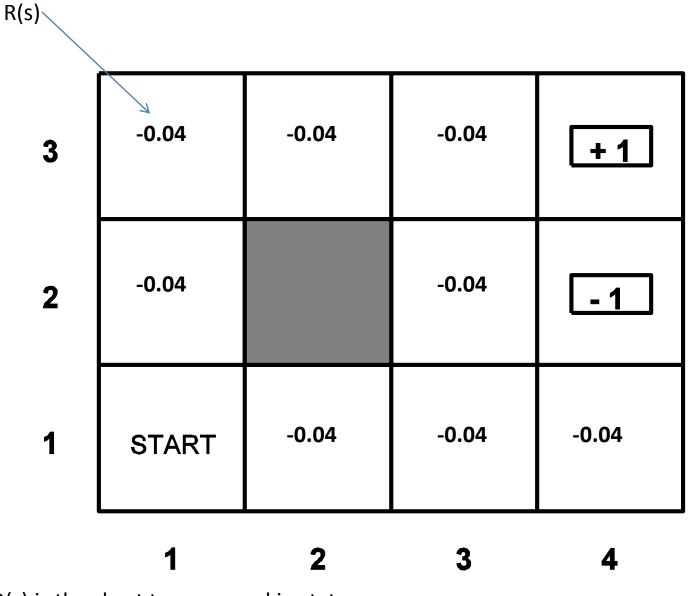
2 3

1

4

Other representations?

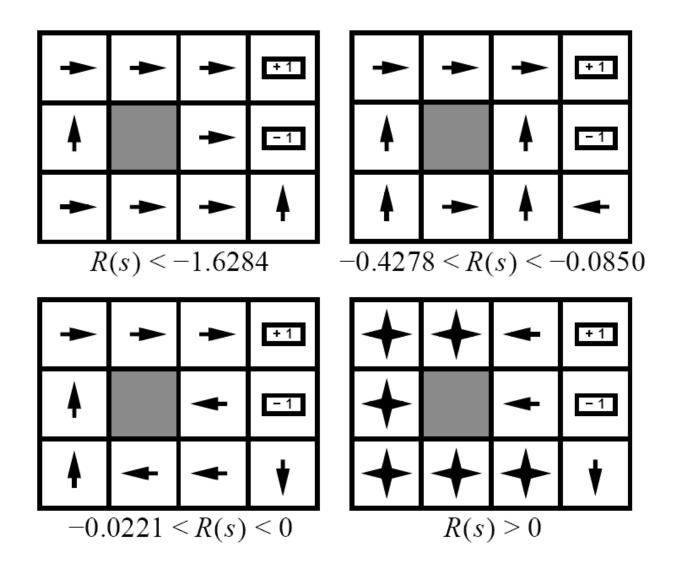
- How can a policy be represented?
 - An arrow for every grid cell
 - What about a continuous world?
 - Θ(x,y)
 - NN
 - C++ function



•R(s) is the short term reward in state s

•U^{\pi}(s) is the long term reward when following policy π from state s

Optimal Policies for Other Rewards



Markovian Model

- Model:
 - Initial state: S₀
 - Transition function: T(s,a,s')
 → T(s,a,s') is the probability of moving from state s to s' when executing action a.
 - Reward function: R(s)
 - \rightarrow Real valued reward that the agent receives for entering state s.
- Assumptions
 - Markov property: T(s,a,s') and R(s) only depend on current state s, but not on any states visited earlier.
 - Extension: Function R may be non-deterministic as well

Markov Decision Process

- Representation of Environment:
 - finite set of states S
 - set of actions A for each state s in S
- Process
 - At each discrete time step, the agent
 - observes state s_t in S and then
 - chooses action a_t in A.
 - After that, the environment
 - gives agent an immediate reward r_t
 - changes state to s_{t+1} (can be probabilistic)

Utilities

- Rating a state sequence [s₀, s₁, s₂, ...]
 - $U([s_0,...,s_N]) = \Sigma_i R(s_i)$
 - Additive rewards:
 - $U_h([s_0, s_1, s_2, ...]) = R(s_0) + R(s_1) + R(s_2) + ...$
- We want preferences to be stationary
 - If $[s_0, s_1, s_2, ...]$ better than $[s_0, s'_1, s'_2, ...]$ implies $[s_1, s_2, ...]$ better than $[s'_1, s'_2, ...]$
- Reward vs. Utility

Discounted Utility

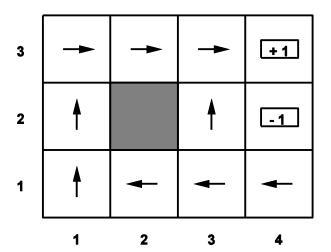
- Problem:
 - What happens to utility value when
 - either the state space has no terminal states
 - or the policy never directs the agent to a terminal state
 - \rightarrow Utility becomes infinite
- Solution
 - Use discounted utility
 - \rightarrow closer rewards count more than awards far in the future

 \rightarrow finite utility even for infinite state sequences

 $U([s_0,...,s_N]) = \Sigma_i \gamma^i R(s_i) \le \Sigma_i \gamma^i R_{max} = R_{max} / (1 - \gamma)$

Policy

- Definition:
 - A policy π describes which action an agent should select in each state
 - a=π(s)
- Utility of a policy
 - For now additive utility



- Let $P([s_0,...,s_N] | \pi, s_0)$ be the probability of state sequence $[s_0,...,s_N]$ when following policy π from state s_0
- Expected utility: $U^{\pi}(s) = \Sigma U([s_0,...,s_N]) P([s_0,...,s_N] | \pi, s_0)$ \rightarrow measure of quality of policy π
- Optimal policy π^* : Policy with maximal $U^{\pi}(s)$ in each state s

Utility ⇔ Policy

- Equivalence:
 - If we know the utility U(s) of each state, we can derive the correseponding policy:

 $\pi^*(s) = \operatorname{argmax}_a \Sigma_{s'} T(s, a, s') U(s')$

- If we know the policy π , we can compute the corresponsing utility of each state:

PolicyEvaluation algorithm

Bellman Equation:

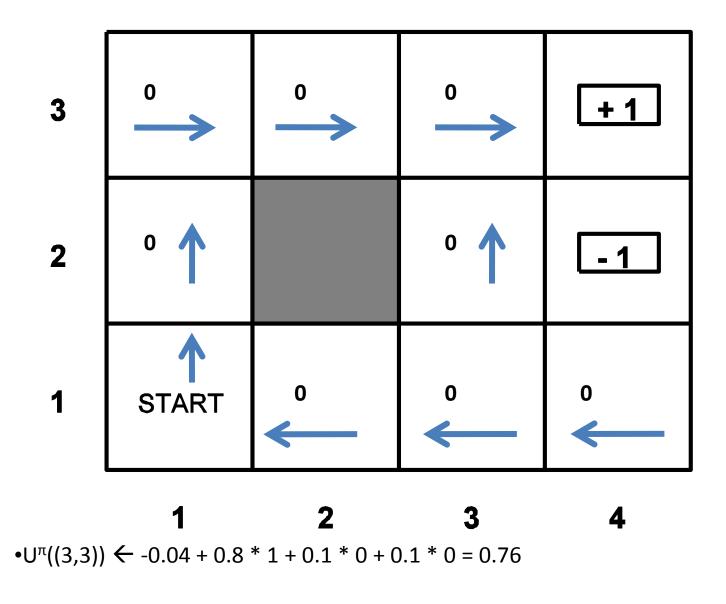
 $U(s) = R(s) + γ max_a Σ_{s'} T(s, a, s') U(s')$ Optimal Utility ⇔ Optimal Policy

How to Compute the Utility for a given Policy?

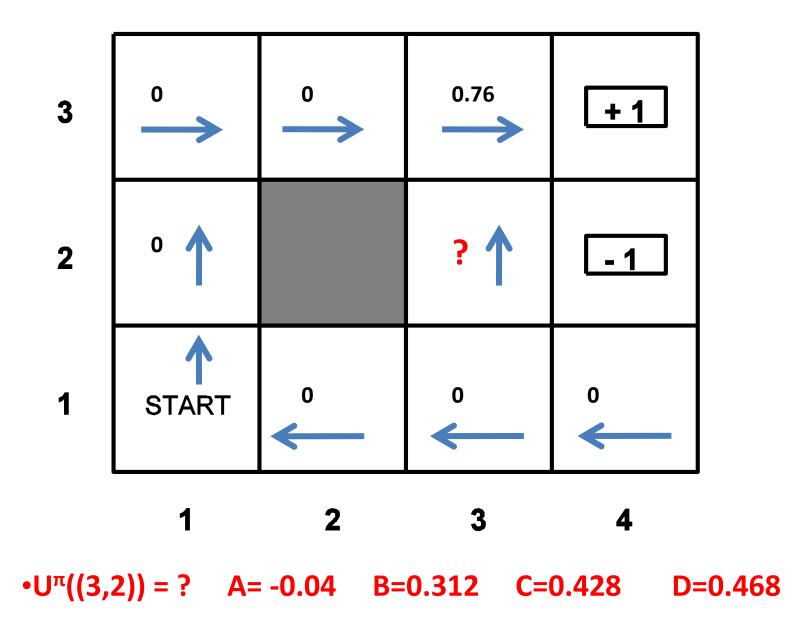
- Definition: Utility of path Likelihood of path
 - $U^{\pi}(s) = \Sigma \left[\Sigma_{i} \gamma^{i} R(s_{i}) \right] P([s_{0}, s_{1}, ...] \mid \pi, s_{0} = s)$
- Recursive computation:

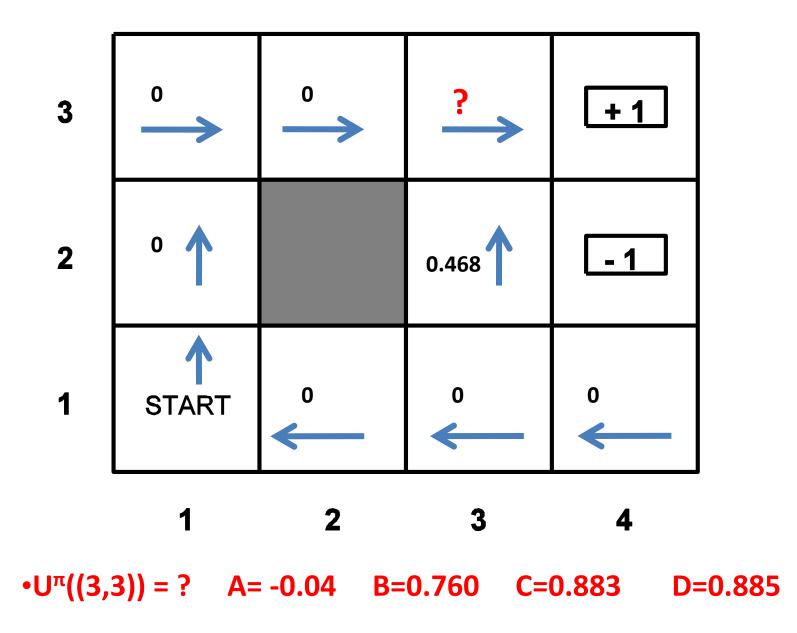
$$- U^{\pi}(s) = R(s) + \gamma \Sigma_{s'} T(s, \pi(s), s') U^{\pi}(s')$$

- What is $P([s_0, s_1, ...] | \pi)$?
 - $\mathsf{P}([\mathsf{s}_0, \mathsf{s}_1, ...] \mid \pi) = \mathsf{T}(\mathsf{s}_0, \pi(\mathsf{s}_0), \mathsf{s}_1) * \mathsf{T}(\mathsf{s}_1, \pi(\mathsf{s}_1), \mathsf{s}_2) * ...$

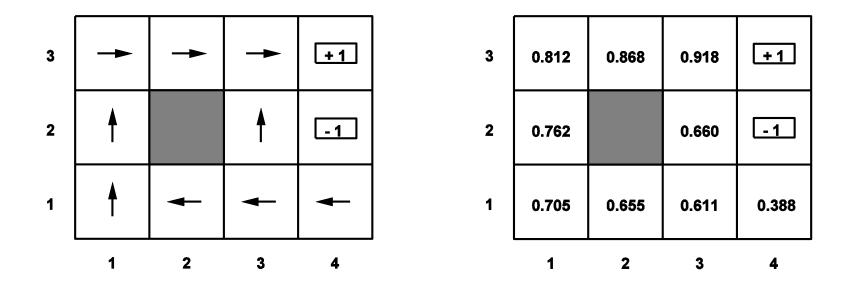


R(s)= -0.04 everywhere except goals





Convergence $U^{\pi}(s) = R(s) + \gamma \Sigma_{s'} T(s, \pi(s), s') U^{\pi}(s')$



Here: γ=1.0, R(s)=-0.04

Bellman Update

• Goal: Solve set of n=|S| equations (one for each state) $U^{\pi}(s_0) = R(s_0) + \gamma \Sigma_{s'} T(s_0, \pi(s), s') U^{\pi}(s')$

 $U^{\pi}(s_n) = R(s_n) + \gamma \Sigma_{s'} T(s_n, \pi(s), s') U^{\pi}(s')$

- Is this a set of linear equations? Why or why not?
- Algorithm [Policy Evaluation] (fix π):
 - -i=0; U^{π}₀(s)=0 for all s
 - repeat
 - i = i +1
 - for each state s in S do

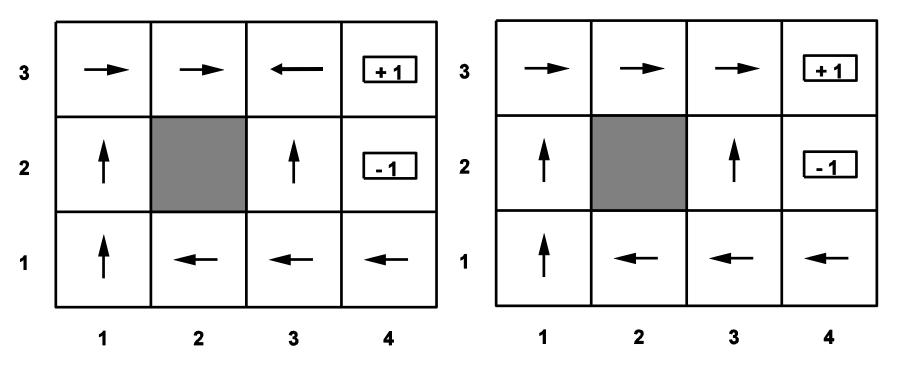
 $- \ U^{\pi}_{i}(s) = R(s) + \gamma \Sigma_{s'} T(s, \pi(s), s') \ U^{\pi}_{i-1}(s')$

- endfor
- until difference between U^{π}_{i} and U^{π}_{i-1} small enough
- return U^{π}_i

How to Find the Optimal Policy π^* ?

- Is policy π optimal? How can we tell?
 - If π is not optimal, then there exists some state where
 π(s) ≠ argmax_a Σ_{s'} T(s, a, s') U^π(s')

– How to find the optimal policy π^* ?



How to Find the Optimal Policy π^* ?

- Algorithm [Policy Iteration]:
 - repeat
 - U^{π} = PolicyEvaluation(π ,S,T,R)
 - for each state s in S do
 - If [max_a $\Sigma_{s'}$ T(s, a, s') U^{π}(s') > $\Sigma_{s'}$ T(s, π (s), s') U^{π}(s')] then
 - » $\pi(s) = \operatorname{argmax}_{a} \Sigma_{s'} T(s, a, s') U^{\pi}(s')$

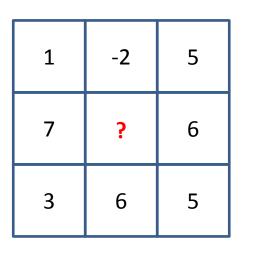
• endfor

- until π does not change any more

return π

Value Iteration

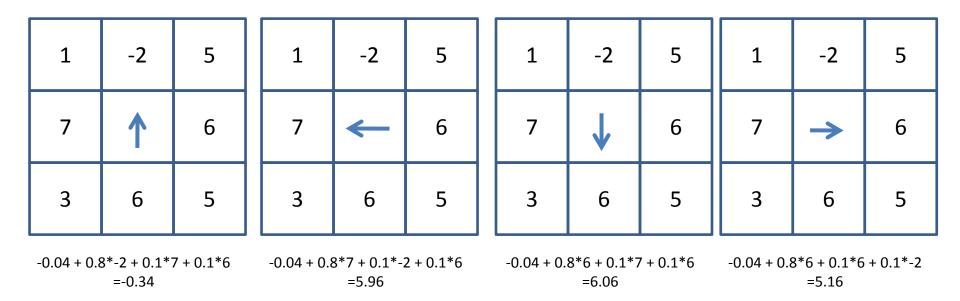
- Optimal Utility ⇔ Optimal Policy
- Find optimal utility directly



↑ ← ↓ →
A B C D
What is the best utility possible for the center?

Value Iteration

- Optimal Utility ⇔ Optimal Policy
- Find optimal utility directly



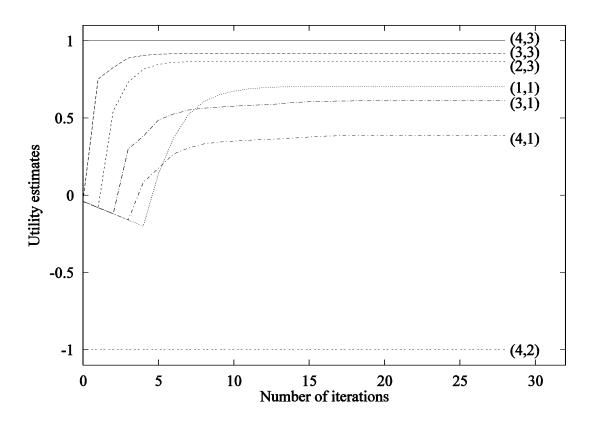
Value Iteration Algorithm

- Algorithm [Value Iteration]:
 - -i=0; U₀(s)=0 for all s
 - repeat
 - i = i +1
 - for each state s in S do
 - $U_i(s) = R(s) + \gamma max_a \Sigma_{s'} T(s, a, s') U_{i-1}(s')$
 - endfor
 - until difference between U_i and U_{i-1} small enough
 - return U_i

Two approaches to finding π^{\ast}

- Policy Iteration
 - Local search: Start with random policy
 - Evaluate a candidate policy using bellman update
 - $\ \mathsf{U}^{\pi}(\mathsf{s}_{0}) = \mathsf{R}(\mathsf{s}_{0}) + \gamma \ \boldsymbol{\Sigma}_{\mathsf{s}'} \ \mathsf{T}(\mathsf{s}_{0}, \, \pi(\mathsf{s}), \, \mathsf{s'}) \ \mathsf{U}^{\pi}(\mathsf{s'})$
 - Linear set of equations
 - Confirm policy is optimal or make changes
- Value Iteration
 - find optimal utilities by iteratively solving
 - $U_i(s) = R(s) + \gamma \max_a \Sigma_{s'} T(s, a, s') U_{i-1}(s')$
 - Derive optimal policy to follow optimal utilities

Convergence of Value Iteration



- Value iteration is guaranteed to converge to optimal U for $0 \le \gamma < 1$
- Faster convergence for smaller γ
- Guaranteed to reach equilibrium (see textbook)