Constraint Satisfaction

Moving to a different formalism...

SEND + MORE -----MONEY

Consider state space for cryptarithmetic (e.g. DFS).

Is this (DFS) how humans tackle the problem?

Human problem solving appears more **sophisticated**! For example, we derive new constraints on the fly.

 \rightarrow **little** or **no** search!

Constraint Satisfaction Problems (CSP)

A powerful representation for (discrete) search problems

A Constraint Satisfaction Problem (CSP) is defined by:

X is a set of n variables X_1 , X_2 ,..., X_n each defined by a finite domain D_1 , D_2 ,... D_n of possible values.

 ${\bf C}$ is a set of constraints C_1 , C_2 ,..., C_m . Each C_i involves a subset of the variables; specifies the allowable combinations of values for that subset.

A solution is an assignment of values to the variables that satisfies all constraints.

Cryptarithmetic as a CSP

Variables:

$$T \in \{0,...,9\}; W \in \{0,...,9\}; 0 \in \{0,...,9\};$$

$$F \in \{0,...,9\}; U \in \{0,...,9\}; R \in \{0,...,9\};$$

$$\pmb{X}_1 \in \{0,...,1\}; \pmb{X}_2 \in \{0,...,1\}; \pmb{X}_3 \in \{0,...,1\}; \; \epsilon$$
 Auxiliary variables

Constraints:

$$\mathbf{0} + \mathbf{0} = \mathbf{R} + 10 * \mathbf{X}_1$$

$$X_1 + W + W = U + 10 * X_2$$

$$X_2 + T + T = O + 10 * X_3$$

$$X_3 = F$$

each letter has a different digit ($F \neq T, F \neq U$, etc.);

Types of Constraints

Unary Constraints:

Restriction on single variable

Binary Constraints:

Restriction on pairs of variables

Higher-Order Constraints:

Restriction on more than two variables

Preferences vs. Constraints

Map Coloring Problem

Constraint Hypergraph

Types of variables

- Discrete domains
 - Boolean {T,F} ← 3-Sat, K-Sat
 - Finite domains {a,b,c...}
 - Infinite (e.g. all integers)
 - constraints represented using language,
 - e.g. X<Y, Y>Z+5
- Continuous domains
 - Linear ← linear programming
 - Nonlinear

Constraint Satisfaction Problems (CSP)

For a given CSP the problem is one of the following:

- 1. find all solutions
- 2. find one solution
 - · just a feasible solution, or
 - · A "reasonably good" feasible solution, or
 - · the optimal solution given an objective
- 3. determine if a solution exists

How to View a CSP as a Search Problem?

Initial State - state in which all the variables are unassigned.

Successor function - assign a value to a variable from a set of possible values.

Goal test - check if all the variables are assigned and all the constraints are satisfied.

Path cost - assumes constant cost for each step

Branching Factor

Approach 1- any unassigned variable at a given state can be assigned a value by an operator: branching factor as high as sum of size of all domains.

Approach 2 - since order of variable assignment not relevant, consider as the successors of a node just the different values of a *single* unassigned variable: max branching factor = max size of domain.

Prefer BFS or DFS?

CSP – Goal Decomposed into Constraints

Backtracking Search: a DFS that

- chooses values for variables one at a time
- checks for consistency with the constraints.

Decisions during search:

- Which variable to choose next for assignment.
- Which value to choose next for the variable.

Example

Minimum Remaining Values (MRV)

- Idea: Assign most constrained variable first
- Prune impossible assignments fairly early
- Degree heuristic: choose higher degree first

Which is best order according to MRV heuristic?

- -A = NT, SA, WA, Q, NSW, V, T
- -B = T, V, SA, NSW, WA, NT, Q
- -C = SA, Q, NSW, V, NT, WA, T

Forward Checking

- Idea: Reduce domain of unassigned variables based on assigned variables.
 - Each time variable is instantiated, delete from domains of the uninstantiated variables all of those values that conflict with current variable assignment.
- Identify dead ends without having to try them via backtracking
 - E.g. if last variable has zero options, no need to go that deep to find out

General Purpose Heuristics

Variable and value ordering:

Degree heuristic: assign a value to the variable that is involved in the largest number of constraints on other unassigned variables.

Minimum remaining values (MRV): choose the variable with the *fewest* possible values.

Least-constraining value heuristic: choose a value that rules out the smallest number of values in variables connected to the current variable by constraints.

Comparison of CSP Algorithms

Problem	BT	BT+MRV	BT+FC	BT+FC+MRV
USA	(>1,000K)	(>1,000K)	2K	60
N-queens	(>40,000K)	13,500K	(>40,000K)	817K

Constraint Propagation (Arc Consistency)

 Arc Consistency - state is arc-consistent, if every variable has some value that is consistent with each of its constraints (consider pairs of variables)

	WA	NT	Q	NSW	V	SA	T
Initial Domains	RGB	RGB	RGB	RGB	RGB	RGB	RGB
After WA=red	R	GB	RGB	RGB	RGB	GB	RGB
After Q=green	<u>R</u>	В	G	R B	RGB	В	RGB
After V=blue	R	В	<u>G</u>	R	<u>B</u>		RGB

Constraint Propagation (Arc Consistency)

 Arc Consistency - state is arc-consistent, if every variable has some value that is consistent with each of its constraints (consider pairs of variables)

```
Init: Q is queue with all (directed) arcs (X_i, X_j) in CSP WHILE Q is not empty

- (X_i, X_j) = \text{remove\_first}(Q)

- FOREACH x \in dom(X_i)

*IF no y \in dom(X_j) satisfies constraint (X_i, X_j)

·THEN remove x from dom(X_i)

- IF dom(X_i) changed

*THEN add all arcs (X_k, X_i) \notin Q to Q
```

Example: Arc Consistency

Task: 3-color

Solution:

	A	В	С	D	\mathbf{E}	F
	RGB	RGB	RGB	RGB	RGB	RGB
A=R	(R)	GB	RBG	RBG	GB	GB
B=G	(R)	(G)	₽B	R-B-	G-B-	В

$$D \neq F : D = \{R, \cancel{B}\}$$

$$E \neq F : E = \{G, \cancel{B}\}$$

$$C \neq D : C = \{R, B\}$$

Constraint Propagation (K-Consistency)

- K-Consistency generalizes arc-consistency (2-consistency).
- Consistency of groups of K variables.
- Path consistency

Constraint learning

- When assignments fail, is there a way to learn new constraints?
 - Conflict-directed back-jumping looks to find the root cause of a failure and adds it as a new constraint

Substructure

More substructure: Symmetries

Local Search for CSPs

Remarks

Dramatic recent progress in Constraint Satisfaction. Methods can now handle problems with **10,000** to **100,000** variables, and up to **1,000,000** constraints.