
Informed Search

Combinatorial Explosion

Depth Nodes Time Memory

2 1100 .11 sec 1 meg

4 111,100 11 sec 106 meg

6 107 19 min 10 gig

8 109 31 hrs 1 tera

10 1011 129 days 101 tera

12 1013 35 yrs 10 peta

14 1015 3523 yrs 1 exa

Rely only on problem description

Informed Methods: Heuristic Search
Idea: Informed search by using problem-specific knowledge.

Best-First Search: Nodes are selected for expansion based on an evaluation
function, f(n). Traditionally, f is a cost measure.

Heuristic: Problem specific knowledge that (tries to) lead the search algorithm
faster towards a goal state. Often implemented via heuristic function h(n).

→ Heuristic search is an attempt to search the most promising paths first. Uses
heuristics, or rules of thumb, to find the best node to expand next.

Uniform-cost search is NOT heuristic search

s s

s

s

0

A

A

A

A

B

B

B

C

C

C C

G

G G

G

1 5

5

5 5 5

15

15

15

15
11

11 10

s

1
B

10

Requirement: g(Successor(n)) g(n) 

It only looks backwards; has no ability to predict future costs.

Always expand lowest cost node in open-list.
Goal-test only before expansion, not after generation.

Generic Best-First Search

1. Set L to be the initial node(s) representing the initial state(s).

2. If L is empty, fail. Let n be the node on L that is ``most promising'‘
according to f. Remove n from L.

3. If n is a goal node, stop and return it (and the path from the initial
node to n).

4. Otherwise, add successors(n) to L. Return to step 2.

seemingly-best-first...

A good heuristic

• Heuristic cost should never overestimate the
actual cost of a node

– I.e. it must be “optimistic”

– So that we never overlook a node that is actually
good

Greedy Best-First Search
Heuristic function h(n): estimated cost from node n to nearest goal node.

Greedy Search: Let f(n) = h(n).

Example: 8-puzzle

4

4 5

6 1

7 3 2

8

2 1

8

3

7 6 5

Start State Goal State

Which move is better?
Heuristic: # of incorrect tiles

• A: Move space Left

• B: Move space Down

• C: Both the same

Which move is better?
Heuristic: Manhattan distance of tiles from correct location

• A: Move space Left

• B: Move space Down

• C: Both the same

1. hC = number of misplaced tiles

2. hM = Manhattan distance

Are they admissible?

Which one should we use?

hC ≤ hM ≤ h*

8-Puzzle

Search Costs on 8-Puzzle
h1: number of misplaced tiles

h2: Manhattan distance

Route Planning
Greedy Best-first search

Straight line distances to Bucharest

Route Planning
Greedy Best-first search

380

374

366

329

193

160

242

253 176

374

100 244

241

77

0

80

Blue – Straight line distance to Bucharest

A* Search

Idea: Use total estimated solution cost:

 g(n): Cost of reaching node n from initial node

 h(n): Estimated cost from node n to nearest goal

A* evaluation function: f(n) = g(n) + h(n)
 → f(n) is estimated cost of cheapest solution through n.

Admissibility
h*(n) Actual cost to reach a goal from n.

Definition: A heuristic function h is optimistic or admissible if h(n) ≤ h*(n) for all
nodes n. (h never overestimates the cost of reaching the goal.)

Theorem: If h is admissible, then the A* algorithm will never return a suboptimal goal
node.

Route Planning
A*

380

374

366

329

193

160

242

253 176

374

100 244

241

77

0

80

Blue – Straight line distance to Bucharest

Assume: h admissible; f non-decreasing along any path.

Proof:

Assume C* is cost of optimal solution, G2 is suboptimal goal (so h(G2)=0)

f(G2)=g(G2)+h(G2)=g(G2) > C*

Assume node n is some node on the optimal path

f(n)=g(n)+h(n) C*

So f(n)  C* < f(G2) so n will always be expanded before G2.

Proof of the optimality of A*

A*
Optimal: yes

Complete: Unless there are infinitely many nodes with

f(n)<f*.
Assume locally finite:
(1) finite branching, (2) every operator costs at least

Complexity (time and space): Still exponential because of

breadth-first nature. Unless |h(n) – h*(n)| ≤ O(log(h*(n))),
with h* true cost of getting to goal.

 A* is optimally efficient: given the information in h, no

other optimal search method can expand fewer nodes.

0 

Find the flat pattern that minimizes total
welding length

Example:
Optimal flat pattern problem

Permutation space

Lots more…

Searching the permutation space

• Searching routes: Reduce travel distance. Heuristic estimates remaining min distance
(optimistic: does not overestimate remaining distance)

• Searching flat patterns: Reduce welding length. Heuristic estimates max savings
(optimistic: does not underestimate remaining savings)

Finding optimal unfolding

Effective Branching Factor

N=1+b*+(b*)2+...+(b*)d = (1- bd+1)/(1-b)
b* =~ N 1/d

Branching factor of chess is about 35

IDA*

Memory is a problem for the A* algorithms.

IDA* is like iterative deepening, but uses an f-
cost limit rather than a depth limit.

At each iteration, the cutoff value is the smallest
f-cost of any node that exceeded the cutoff on
the previous iteration.

 Each iteration uses conventional depth-first
search.

Example: IDA*
• Initial state: A, f=100
• Cutoff: 100

• Cutoff: 101

• Cutoff: 105

A

E D C B

100

101 110 200 105

A

E D C B

100

101 110 200 105

G

120

H

105

Similar to a DFS, but keeps track of the f-value of the best alternative path available
from any ancestor of the current node.

If current node exceeds this limit, recursion unwinds back to the alternative path,

replacing the f-value of each node along the path with the best (highest, most
accurate estimate) f-value of its children.

(RBFS remembers the f-value of the best leaf in the forgotten subtree.)

Recursive best-first search (RBFS)

Example: RBFS

A

E D C B

f=100

101 110 200 230

G

120

H

105

I

115

J

130

A

E D C B

f=100

115 110 200 230

K

117

L

140

L=[(C,110), (I,115), (G,120),
(J,130), (D,200), (E,230)]

L=[(C,110), (B,115), (D,200),
(E,230)]

L=[(B,115), (K,117), (L,140), (D,200),
(E,230)]

L=[(B,115), (C,117), (D,200), (E,230)]

Example: RBFS (continued)

A

E D C B

f=100

115 117 200 230

G

120

H

115

I

115

J

130

M

Goal
116

N

120

SMA*

Simplified Memory-Bounded A* Search:
• While memory available, proceeds just like A*,

expanding the best leaf.
• If memory is full, drops the worst leaf node -

the one the highest f-cost; and stores this
value in its parent node.

(Won't know which way to go from this node,
but we will have some idea of how worthwhile
it is to explore the node.)

Constructing Admissible
Heuristics

Deriving admissible heuristics automatically

Combining Heuristics

• h(n)=max(h1(n),h2(n),...,hm(n))

Relaxed problems

– A problem with less restrictions on its

operators is called a relaxed problem.
– The optimal solution of the original

problem is also a solution to the relaxed
problem and must therefore be at least as
expensive as the optimal solution to the
relaxed problem

Relaxed problems

• A tile can move from square A to square B if A is adjacent to B and B is blank.

• A tile can move from square A to square B if A is adjacent to B.

• A tile can move from square A to square B if B is blank.

• A tile can move from square A to square B.

Sub-Problems

• Cost of solutions to sub-problems are
admissible
– Pattern databases can store exact of the

problem.

*

2 *

*

4

* 3 1

*

1

4 3

2

* * *

Start State Goal State

Sub-Problems

• Cost of solutions to sub-problems are
admissible
– Pattern databases can store exact of the

problem
– 4-tiles more effective than Manhattan

distance
• 1000 factor reduction on 15-puzzle

– Disjoint patterns can be added
• 10,000 factor reduction on 15-puzzle
• 1M factor for 24-puzzle

Learning from experience

• Learn from prior searches

• Use inductive learning methods

– Calculate actual cost for 1000 random samples

– x1 = Manhattan distance

– Discover that when x1(n)=5, actual cost is 14

– x2 = Number of relatively-correct pairs

– h(n)=c1*x1(n)+c2*x2(n)

– Loose admissibility…

