
Informed Search 



Combinatorial Explosion 

Depth Nodes Time Memory 

2 1100 .11 sec 1 meg 

4 111,100 11 sec 106 meg 

6 107 19 min 10 gig 

8 109 31 hrs 1 tera 

10 1011 129 days 101 tera 

12 1013 35 yrs 10 peta 

14 1015 3523 yrs 1 exa 

Rely only on problem description 



Informed Methods: Heuristic Search 
Idea: Informed search by using problem-specific knowledge. 
 
Best-First Search: Nodes are selected for expansion based on an evaluation 
function, f(n). Traditionally, f is a cost measure. 
 
Heuristic: Problem specific knowledge that (tries to) lead the search algorithm 
faster towards a goal state. Often implemented via heuristic function h(n). 
 
→ Heuristic search is an attempt to search the most promising paths first. Uses 
heuristics, or rules of thumb, to find the best node to expand next.  
 



Uniform-cost search is NOT heuristic search 
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Requirement: g(Successor(n))      g(n)  

It only looks backwards; has no ability to predict future costs. 

Always expand lowest cost node in open-list.  
Goal-test only before expansion, not after generation. 



Generic Best-First Search 

1. Set L to be the initial node(s) representing the initial state(s). 
 

2. If L is empty, fail. Let n be the node on L that is ``most promising'‘ 
according to f. Remove n from L. 
 

3. If n is a goal node, stop and return it (and the path from the initial 
node to n). 
 

4. Otherwise, add successors(n) to L. Return to step 2. 
 

 

seemingly-best-first... 



A good heuristic 

• Heuristic cost should never overestimate the 
actual cost of a node 

– I.e. it must be “optimistic” 

– So that we never overlook a node that is actually 
good 

 



Greedy Best-First Search 
Heuristic function h(n): estimated cost from node n to nearest goal node. 
 

Greedy Search: Let f(n) = h(n). 
 

Example: 8-puzzle 
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Which move is better? 
Heuristic: # of incorrect tiles 

• A: Move space Left 

• B: Move space Down 

• C: Both the same 



Which move is better? 
Heuristic: Manhattan distance of tiles from correct location 

• A: Move space Left 

• B: Move space Down 

• C: Both the same 



1. hC = number of misplaced tiles 

2. hM = Manhattan distance 

 

Are they admissible? 

Which one should we use? 

hC ≤  hM ≤  h* 

8-Puzzle 



Search Costs on 8-Puzzle 
h1: number of misplaced tiles 

h2: Manhattan distance 



Route Planning 
Greedy Best-first search 



Straight line distances to Bucharest 



Route Planning 
Greedy Best-first search 
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Blue – Straight line distance to Bucharest 



A* Search 

Idea: Use total estimated solution cost: 
 

 g(n): Cost of reaching node n from initial node 
 

 h(n): Estimated cost from node n to nearest goal 
 
A* evaluation function: f(n) = g(n) + h(n) 
      → f(n) is estimated cost of cheapest solution through n. 
 



Admissibility 
h*(n) Actual cost to reach a goal from n. 
 
Definition: A heuristic function h is optimistic or admissible if h(n) ≤ h*(n) for all 
nodes n. (h never overestimates the cost of reaching the goal.) 
 
Theorem: If h is admissible, then the A* algorithm will never return a suboptimal goal 
node.  
 



Route Planning 
A* 
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Assume: h admissible; f non-decreasing along any path. 
 
Proof: 
 
Assume C* is cost of optimal solution, G2 is suboptimal goal  (so h(G2)=0) 
 
f(G2)=g(G2)+h(G2)=g(G2) > C* 
 
Assume node n is some node on the optimal path  
 
f(n)=g(n)+h(n) C* 
 
So  f(n)  C* < f(G2) so n will always be expanded before G2. 
 
 

Proof of the optimality of A* 



A* 
Optimal: yes 
 
Complete: Unless there are infinitely many nodes with 

f(n)<f*.  
Assume locally finite: 
(1) finite branching, (2) every operator costs at least  

 
Complexity (time and space): Still exponential because of 

breadth-first nature. Unless |h(n) – h*(n)| ≤ O(log(h*(n))), 
with h* true cost of getting to goal. 

 
 A* is optimally efficient: given the information in h, no 

other optimal search method can expand fewer nodes. 

0 



Find the flat pattern that minimizes total 
welding length 

Example:  
Optimal flat pattern problem 



Permutation space 

Lots more… 



Searching the permutation space 

• Searching routes: Reduce travel distance. Heuristic estimates remaining min distance  
(optimistic: does not overestimate remaining distance) 

• Searching flat patterns: Reduce welding length. Heuristic estimates max savings 
(optimistic: does not underestimate remaining savings) 



Finding optimal unfolding 



Effective Branching Factor 

N=1+b*+(b*)2+...+(b*)d  = (1- bd+1)/(1-b) 
b* =~ N 1/d 

Branching factor of chess is about 35 



IDA* 

Memory is a problem for the A* algorithms. 
 

IDA* is like iterative deepening, but uses an  f-
cost limit rather than a depth limit. 
 

At each iteration, the cutoff value is the smallest 
f-cost of any node that exceeded the cutoff on 
the previous iteration. 
 

 Each iteration uses conventional depth-first 
search. 



Example: IDA* 
• Initial state: A, f=100 
• Cutoff: 100 

 
 
 

• Cutoff: 101 
 
 
 
 

• Cutoff: 105 
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Similar to a DFS, but keeps track of the f-value of the best alternative path available 
from any ancestor of the current node. 

 
If current node exceeds this limit, recursion unwinds back to the alternative path, 

replacing the f-value of each node along the path with the best (highest, most 
accurate estimate) f-value of its children. 

 
(RBFS remembers the f-value of the best leaf in the forgotten subtree.) 
 

Recursive best-first search (RBFS) 



Example: RBFS 
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L=[(C,110), (I,115), (G,120), 
(J,130), (D,200), (E,230)] 

L=[(C,110), (B,115), (D,200), 
(E,230)] 

 

L=[(B,115), (K,117), (L,140), (D,200), 
(E,230)] 

L=[(B,115), (C,117), (D,200), (E,230)] 



Example: RBFS (continued) 
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SMA* 

Simplified Memory-Bounded A* Search: 
• While memory available, proceeds just like A*, 

expanding the best leaf. 
• If memory is full, drops the worst leaf node - 

the one the highest f-cost; and stores this 
value in its parent node. 
 

(Won't know which way to go from this node, 
but we will have some idea of how worthwhile 
it is to explore the node.) 

 



Constructing Admissible 
Heuristics 

Deriving admissible heuristics automatically 



Combining Heuristics 

• h(n)=max(h1(n),h2(n),...,hm(n))  



Relaxed problems 

– A problem with less restrictions on its 

operators is called a relaxed problem.  
– The optimal solution of the original 

problem is also a solution to the relaxed 
problem and must therefore be at least as 
expensive as the optimal solution to the 
relaxed problem 

 
 



Relaxed problems 

• A tile can move from square A to square B if A is adjacent to B and B is blank.  

• A tile can move from square A to square B if A is adjacent to B.  

• A tile can move from square A to square B if B is blank.  

• A tile can move from square A to square B.  



Sub-Problems 

• Cost of solutions to sub-problems are 
admissible 
– Pattern databases can store exact of the 

problem. 
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Sub-Problems 

• Cost of solutions to sub-problems are 
admissible 
– Pattern databases can store exact of the 

problem 
– 4-tiles more effective than Manhattan 

distance 
• 1000 factor reduction on 15-puzzle 

– Disjoint patterns can be added 
• 10,000 factor reduction on 15-puzzle 
• 1M factor for 24-puzzle 
 



Learning from experience 

• Learn from prior searches 

• Use inductive learning methods 

– Calculate actual cost for 1000 random samples 

– x1 = Manhattan distance 

– Discover that when x1(n)=5, actual cost is 14 

– x2 = Number of relatively-correct pairs 

– h(n)=c1*x1(n)+c2*x2(n) 

– Loose admissibility… 
 


