
Problem-Solving as Search

Intelligent Agents
Agent:
Anything that can be viewed as perceiving its environment through sensors and
acting upon that environment through actuators.

Agent Function:
Agent behavior is determined by the agent function that maps any given percept
sequence to an action.

Agent Program:
The agent function for an artificial agent will be implemented by an agent
program.

A Simple Reflex Agent
En

viro
n

m
en

t

What the world
is like now

What action I
should do now

Condition-action rules

Sensors Agent

Actuators

Agent with Model and Internal State
En

viro
n

m
en

t

What the world
is like now

What action I
should do now

Condition-action rules

Sensors Agent

Actuators

How the world evolves

Goal-Based Agent
En

viro
n

m
en

t

What the world is
like now

What action I
should do now

Goals

Sensors Agent

Actuators

How the world evolves

What it will be like
if I do action A

Schedule

• Search

• Machine learning

• Knowledge based systems

• Discovery

Problem Solving as Search

• Search is a central topic in AI
– Originated with Newell and Simon's work on problem

solving.

– Famous book: “Human Problem Solving” (1972)

• Automated reasoning is a natural search task

• More recently: Smarter algorithms
– Given that almost all AI formalisms (planning,

learning, etc.) are NP-complete or worse, some form
of search is generally unavoidable (no “smarter”
algorithm available).

Defining a Search Problem

State space - described by
 initial state - starting state
 actions - possible actions available
 successor function; operators - given a
 particular state x, returns a set of
 < action, successor > pairs

Goal test - determines whether a given state is
a goal state (sometimes list, sometimes condition).

Path cost - function that assigns a cost to a path

The 8 Puzzle

4

4 5

6 1

7 3 2

8

2 1

8

3

7 6 5

Initial State Goal State

Clicker

• What is the size of the state space?

– A. 4

– B. 3x3

– C. 9!

– D. 99

– E. Whatever

Clicker

• How many actions possible for each state (on
average)?

– A. ~1

– B. ~4

– C. ~9

– D. ~9!

Cryptarithmetic

 SEND

 + MORE

 MONEY

Find (non-duplicate) substitution of digits for letters such that the resulting sum is
arithmetically correct.

Each letter must stand for a different digit.

Solving a Search Problem: State Space Search

Input:
– Initial state
– Goal test
– Successor function
– Path cost function

Output:

– Path from initial state to goal state.
– Solution quality is measured by the path cost.

Generic Search Algorithm
L = make-list(initial-state)

loop

 node = remove-front(L) (node contains path

 of how the algorithm got

there)

 if goal-test(node) == true then

 return(path to node)

 S = successors (node)

 insert (S,L)

until L is empty

return failure

Search procedure defines a search tree

Search tree
 root node - initial state
 children of a node - successor states
 fringe of tree - L: states not yet expanded

Search strategy - algorithm for deciding which

leaf node to expand next.
 stack: Depth-First Search (DFS).
 queue: Breadth-First Search (BFS).

Solving the 8-Puzzle

4

4 5

6 1

7 3 2

8

2 1

8

3

7 6 5

Start State Goal State

What would the search tree look like after the start state was expanded?

Node Data Structure

4 5

6 1

7 3 2

8

PARENT-NODE

 ACTION= right
 DEPTH=6
 PATH-COST=6

CHILD-NODE CHILD-NODE

NODE

STATE

Sliding Block Puzzles

• 8-puzzle (on 3x3 grid) has 181,440 states

– Easily solvable from any random position

• 15-puzzle (on 4x4 grid) has ~1.3 Trillion states

– Solvable in a few milliseconds

• 24-puzzle (on 5x5 grid) has ~1025 states

– Difficult to solve

Evaluating a Search Strategy
Completeness:
Is the strategy guaranteed to find a solution when there is one?

Time Complexity:
How long does it take to find a solution?

Space Complexity:
How much memory does it need?

Optimality:
Does strategy always find a lowest-cost path to solution? (this may include different
cost of one solution vs. another).

Uninformed search: BFS

Consider paths of length 1, then of length 2,
then of length 3, then of length 4,....

Time and Memory Requirements for BFS – O(bd+1)

Let b = branching factor, d = solution depth, then the
maximum number of nodes generated is:

 b + b2 + ... + bd + (bd+1-b)

Time and Memory Requirements for BFS – O(bd+1)

Example:
• b = 10
• 10,000 nodes/second
• each node requires 1000 bytes of storage

Depth Nodes Time Memory

2 1100 .11 sec 1 meg

4 111,100 11 sec 106 meg

6 107 19 min 10 gig

8 109 31 hrs 1 tera

10 1011 129 days 101 tera

12 1013 35 yrs 10 peta

14 1015 3523 yrs 1 exa

Uniform-cost Search

s s

s

s

0

A

A

A

A

B

B

B

C

C

C C

G

G G

G

1 5

5

5 5 5

15

15

15

15
11

11 10

s

1
B

10

Requirement: g(Successor(n)) g(n) 

Use BFS, but always expand the lowest-cost node on the fringe as measured by path
cost g(n).

Always expand lowest cost node in open-list.
Goal-test only before expansion, not after generation.

Uninformed search: DFS

DFS vs. BFS

Time
 m = d: DFS typically wins
 m > d: BFS might win
 m is infinite: BFS probably will do better
Space
 DFS almost always beats BFS

Complete Optimal Time Space

BFS YES YES O(bd+1) O(bd+1)

DFS Finite depth NO O(bm) O(bm)

m is maximum search depth d is solution depth b is branching factor

Which search should I use...

If there may be infinite paths?

B=BFS D=DFS

Which search should I use...

If goal is at a known depth?

B=BFS D=DFS

Which search should I use...

If there is a large (possibly infinite) branching
factor?

B=BFS D=DFS

Which search should I use...

If there are lots of solutions?

B=BFS D=DFS

Backtracking Search

Idea:
DFS, but don’t expand all b states before next level
Generate the next state as needed (e.g. from previous

state)

Uses only O(m) storage
Important when space required to store each state is

very large (e.g. assembly planning)

Iterative Deepening [Korf 1985]

Idea:
Use an artificial depth cutoff, c.

 If search to depth c succeeds, we're done.

If not, increase c by 1 and start over.

Each iteration searches using depth-limited DFS.

Limit=1

Iterative Deepening Limit=0

Limit=2

Limit=3

Cost of Iterative Deepening

space: O(bd) as in DFS, time: O(bd)

b ratio of IDS to DFS

2 3

3 2

5 1.5

10 1.2

25 1.08

100 1.02

Bidirectional Search

Comparing Search Strategies

***Note that many of the ``yes's'' above have caveats, which
we discussed when covering each of the algorithms.

Criterion Breadth

-First

Uniform-

Cost

Depth-

First

Iterative

Deepening

Bidirectional

(if applicable)

Time bd+1 bm bd bd/2

Space bd+1 bm bd bd/2

Optimal? Yes yes no yes yes

Complete? Yes Yes No Yes Yes

*
1

C

b



*
1

C

b



