Ungraded quiz: camera calibration and stereo

May 3, 2020

1. When performing camera calibration, we set up a system of equations $A\|\mathbf{p}\|=\mathbf{0}$ in the parameters \mathbf{p} that define the camera projection matrix. We then tried to minimize $A\|\mathbf{p}\|$ subject to $\|\mathbf{p}\|=1$. Here, we constrain $\|\mathbf{p}\|=1$ because:
(a) A camera projection matrix is valid only if its Frobenius norm is 1.
(b) The constraint makes the optimization easier to implement.
(c) The correspondences used to form A might be noisy.
(d) The equations $A\|\mathbf{p}\|=\mathbf{0}$ are not sufficient to produce a unique matrix P, and will produce a family of solutions.
(d) is correct. Because the projection equations are all expressed in homogenous coordinates, if P is a solution, so is αP. To isolate a single solution, we need to add a constraint on the Frobenius norm.
2. For a particular camera, the intrinsic camera parameters are $K=I$. Its projection matrix P is one of the following. Which is it?
(a) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
(b) $\left[\begin{array}{ccc}0.8 & 0.6 & 0 \\ -0.6 & 0.8 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$
(c) $\left[\begin{array}{ccc}0.8 & 0.6 & 0 \\ -0.6 & 0.8 & 0 \\ 0 & 0 & 1 \\ 1\end{array}\right]$
(d) $\left[\begin{array}{llll}3 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 7 & 0\end{array}\right]$
P is a 3×4 matrix. If K is identity, then $P=\left[\begin{array}{ll}R & \mathrm{t}\end{array}\right]$, where R is a rotation
matrix. Thus the first 3×3 submatrix of P must be a rotation matrix. This in turn means that the first 3 columns of P must be (a) orthogonal to each other, and (b) unit norm. Only (c) satisfies this constraint.
3. Two cameras are looking at a scene. They have projection matrices $P^{(1)}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$ and $P^{(2)}=\left[\begin{array}{cccc}0.8 & 0 & 0.6 & -4 \\ 0 & 1 & 0 & 0 \\ -0.6 & 0 & 0.8 & 3\end{array}\right]$. A 3D world point appears in the first image at the location $(2,0)$, and in the second image at location $(-18,0)$ (Each tuple is the (x, y) coordinates). What is the 3 D location of this world point?

Suppose the world point is $\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]$. From the first camera, we have:

$$
\begin{align*}
{\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] } & \equiv P^{(1)}\left[\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right] \tag{1}\\
\Rightarrow \lambda\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] & =P^{(1)}\left[\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right] \tag{2}\\
\Rightarrow \lambda\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] & =\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right] \tag{3}\\
\Rightarrow 2 \lambda & =X \\
0 & =Y \tag{4}\\
\lambda & =Z \\
\Rightarrow X & =2 Z \tag{5}\\
Y & =0 \tag{6}
\end{align*}
$$

Let us now look at the second camerra:

$$
\begin{align*}
{\left[\begin{array}{c}
-18 \\
0 \\
1
\end{array}\right] } & \equiv P^{(2)}\left[\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right] \tag{7}\\
\Rightarrow \lambda\left[\begin{array}{c}
-18 \\
0 \\
1
\end{array}\right] & =P^{(2)}\left[\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right] \tag{8}\\
\Rightarrow-18 \lambda & =0.8 X+0.6 Z-4 \\
0 & =Y \tag{9}\\
\lambda & =-0.6 X+0.8 Z+3
\end{align*}
$$

Substituting $X=2 Z$ in the first and third equations, we get:

$$
\begin{align*}
-18 \lambda & =2.2 Z-4 \tag{10}\\
\lambda & =-0.4 Z+3 \tag{11}\\
\Rightarrow-18(-0.4 Z+3) & =2.2 Z-4 \tag{12}\\
\Rightarrow 7.2 Z-54 & =2.2 Z-4 \tag{13}\\
\Rightarrow 5 Z & =50 \tag{14}\\
\Rightarrow Z & =10 \tag{15}\\
\Rightarrow X & =20 \tag{16}
\end{align*}
$$

Thus, the point is $(20,0,10)$.

