Ungraded quiz: camera calibration and stereo

April 22, 2020

1. When performing camera calibration, we set up a system of equations $A\|\mathbf{p}\|=\mathbf{0}$ in the parameters \mathbf{p} that define the camera projection matrix. We then tried to minimize $A\|\mathbf{p}\|$ subject to $\|\mathbf{p}\|=1$. Here, we constrain $\|\mathbf{p}\|=1$ because:
(a) A camera projection matrix is valid only if its Frobenius norm is 1.
(b) The constraint makes the optimization easier to implement.
(c) The correspondences used to form A might be noisy.
(d) The equations $A\|\mathbf{p}\|=\mathbf{0}$ are not sufficient to produce a unique matrix P, and will produce a family of solutions.
2. For a particular camera, the intrinsic camera parameters are $K=I$. Its projection matrix P is one of the following. Which is it?
(a) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
(b) $\left[\begin{array}{ccc}0.8 & 0.6 & 0 \\ -0.6 & 0.8 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$
(c) $\left[\begin{array}{cccc}0.8 & 0.6 & 0 & 5 \\ -0.6 & 0.8 & 0 & 7 \\ 0 & 0 & 1 & 1\end{array}\right]$
(d) $\left[\begin{array}{llll}3 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 7 & 0\end{array}\right]$
3. Two cameras are looking at a scene. They have projection matrices $P^{(1)}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$ and $P^{(2)}=\left[\begin{array}{cccc}0.8 & 0 & 0.6 & -4 \\ 0 & 1 & 0 & 0 \\ -0.6 & 0 & 0.8 & 3\end{array}\right]$. A 3D world point appears in the first image at the location $(2,0)$, and in the second image at location $(-18,0)$ (Each tuple is the (x, y) coordinates). What is the 3 D location of this world point?
