
Correspondence: Feature 
detection



A general pipeline for correspondence

1. If sparse correspondences are enough, choose points for which we 
will search for correspondences (feature points)

2. For each point (or every pixel if dense correspondence), describe 
point using a feature descriptor

3. Find best matching descriptors across two images (feature 
matching)

4. Use feature matches to perform downstream task, e.g., pose 
estimation 



Corner Detection: Basic Idea
• We should easily recognize the point by looking 

through a small window
• Shifting a window in any direction should give a 

large change in intensity

“edge”:
no change 
along the edge 
direction

“corner”:
significant 
change in all 
directions

“flat” region:
no change in 
all directions

Source: A. Efros



Corner detection: math

• For every window !, define "($, &): 
• appearance change if window is shifted by u in X and v in Y

• Good features: window appearance changes drastically when moved 
1 pixel in any direction
• Mathematically, " $, & ≫ 0 ∀ $, &: $, + &, = 1
• Or alternatively: min

3,4: 3564578
"($, &) ≫ 0



Consider shifting the window W by (u,v)
• how do the pixels in W change?
• compare each pixel before and after by

summing up the squared differences (SSD)
• this defines an SSD “error” E(u,v):
! ", $
= &

',( ∈*
+ , + ", . + $ − + ,, . 0

• We want E(u,v) to be as high as possible 
for all u, v!

Corner detection:  the math
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Corner detection:  the math

Consider shifting the window W by (u,v)
• define an “error” E(u,v):

W

• Thus, E(u,v) is locally approximated as a quadratic error function



A more general formulation

• Maybe all pixels in the patch are not equally important
• Consider a “window function” !(#, %) that acts as weights
• ' (, ) = ∑ ,,- ∈/ !(#, %) 0 # + (, % + ) − 0 #, % 3

• Case till now:
• w(x,y) = 1 inside the window, 0 otherwise



Using a window function

• Change in appearance of window w(x,y)  for the shift [u,v]:

[ ]2
,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y= + + -å

IntensityShifted 
intensity

Window 
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside

Source: R. Szeliski



Redoing the derivation using a window 
function
! ", $ = &

',(∈*
+( -, .) 0 - + ", . + $ − 0 -, . 3

≈ &
',(∈*

+ -, . 0 -, . + "0' -, . + $0( -, . − 0 -, . 3

= &
',(∈*

+ -, . "0' -, . + $0( -, .
3

= &
',(∈*

+ -, . ["30' -, . 3 + $30( -, . 3 + 2"$0' -, . 0( -, . ]



Redoing the derivation using a window 
function
•

! ", $ ≈ &
',(∈*

+ ,, - ["/0' ,, - / + $/0( ,, - / + 2"$0' ,, - 0( ,, - ]

= 5"/ + 26"$ + 7$/
5 = &

',(∈*
+ ,, - 0' ,, - /

6 = &
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+ ,, - 0' ,, - 0((,, -)

7 = &
',(∈*

+ ,, - 0( ,, - /



The second moment matrix

Second moment matrix

M

M =
X

x,y2W

w(x, y)


Ix(x, y)2 Ix(x, y)Iy(x, y)

Ix(x, y)Iy(x, y) Iy(x, y)2

�



The second moment matrix

Second moment matrix

M =
X

x,y2W

w(x, y)


Ix(x, y)2 Ix(x, y)Iy(x, y)

Ix(x, y)Iy(x, y) Iy(x, y)2

�

! " = "$%"



The second moment matrix

• We want to find min
$: $ &'

$()$ to be high

• What does this mean in terms of )?



u v

E(u,v)
E(u,v) E(u,v) E(u,v)

v v vu u u



“Flat” patch

• All gradients are 0

• !" = $ ∀"
• min": " *+ "

,!" = 0

M =
X

x,y

w(x, y)


I2x IxIy
IxIy I2y

�

=


0 0
0 0

�



Vertical edge

• All Y derivatives are 0

• min$: $ &' $
()$ = 0

M =
X

x,y

w(x, y)


I2x IxIy
IxIy I2y

�

=


a 0
0 0

�

M


0
y

�
= 0 8y



Horizontal edge

• All Y derivatives are 0

• min$: $ &' $
()$ = 0

M =
X

x,y

w(x, y)


I2x IxIy
IxIy I2y

�

=


0 0
0 d

�

M


x
0

�
= 0 8x



What about edges in arbitrary orientation?



Solutions to Mx = 0 are directions for which E 
is 0: window can slide in this direction 
without changing appearance

! " = "$%"
%" = & ⇔ ! " = 0

What if no solution exists?



Quadratic functions and eigenvalues

• Consider an eigenvector ! of "
• "! = $!
• ! = 1
• !%"! = $!%! = $

• Theorem: 
• min): ) +, !

%"! = $-./ (smallest eigenvalue)

• max
): ) +,

!%"! = $-2) (largest eigenvalue)

• Proof based on following additional facts:
• Eigenvectors form a basis for input space
• Eigenvectors can be chosen to be orthogonal to each other.



Eigenvalues and eigenvectors of the second 
moment matrix

Eigenvalues and eigenvectors of M
• Define shift directions with the smallest and largest change in 

appea
• xmax = direction of largest increase in E
• lmax = amount of increase in direction xmax

• xmin = direction of smallest increase in E
• lmin = amount of increase in direction xmin

xmin

xmax
M

M

E(u, v) ⇡
⇥
u v

⇤
M


u
v

�



Corner detection:  the math
Want E(u,v) to be large for small shifts in all directions
• the minimum of E(u,v) should be large, over all unit 

vectors [u v]
• this minimum is given by the smaller eigenvalue (lmin) of 

M



!"#$ ≈ !"&' ≫ 0
E very high in all directions

Corner

!"#$ ≫ !"&', !"&' ≈ 0
E remains close to 0 
along +"&'

Edge!"#$, !"&' are small;
E is almost 0 in all 
directions Flat patch

!"&'

!"#$

Interpreting the eigenvalues



Computing the second moment matrix 
efficiently

• Window function w(x,y) typically a 
Gaussian centered on the window

• ! ", $ = &'
()(* +
,+ ' -)-* +

,+

• Need to compute this matrix 
efficiently for every window location

M =
X

x,y2W

w(x, y)


Ix(x, y)2 Ix(x, y)Iy(x, y)

Ix(x, y)Iy(x, y) Iy(x, y)2

�



Computing the second moment matrix 
efficiently

• Step 1: Place k x k window 
• Step 2: Compute ∑",$∈&' (, ) *" (, ) + =
∑",$ -.

/0/1 2
32 . 4041 2

32 *" (, ) + (similarly other terms)
• This can be expressed as a convolution!

M =
X

x,y2W

w(x, y)


Ix(x, y)2 Ix(x, y)Iy(x, y)

Ix(x, y)Iy(x, y) Iy(x, y)2

�



Computing the second moment matrix

• Compute image gradients !", !$ (both of these are images) 
• Might want to blur with a Gaussian before doing this. Why?

• Compute !"%, !$%, !"!$ (these are images too)
• Convolve with windowing function (typically Gaussian)
• Assemble second moment matrix at every pixel



Corner detection summary
Here’s what you do

• Compute the gradient at each point in the image
• Create the M matrix from the entries in the gradient
• Compute the eigenvalues 
• Find points with large response (lmin > threshold)
• Choose those points where lmin is a local maximum as features



Corner detection summary
Here’s what you do

• Compute the gradient at each point in the image
• Create the H matrix from the entries in the gradient
• Compute the eigenvalues. 
• Find points with large response (lmin > threshold)
• Choose those points where lmin is a local maximum as features



Corner detection summary

• !"#$ is what we want but can be expensive to compute in every 
window
• Alternatives?
• Fact:
• Determinant = product of eigenvalues = !"#$!"%&: high when both are high
• Trace = sum of eigenvalues = !"#$ + !"%&: high when at least one is high

• One variant:

• Many other variants possible 

2
2121

2 )()(trace)det( llalla +-=-= MMR



! > 0
Corner

! < 0
Edge

! ≈ 0
Flat patch

&'()

&'*+

Corner response function
2

2121
2 )()(trace)det( llalla +-=-= MMR



The Harris operator

Harris 
operator



Harris Detector [Harris88]

• Second moment matrix
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1. Image 
derivatives

2. Square of 
derivatives

3. Gaussian 
filter g(sI)
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4. Cornerness function – both eigenvalues are strong

har5. Non-maxima suppression
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(optionally, blur first)



Harris detector

• Color images?
• Same derivation yields a different second moment matrix:

M =
X

x,y,c

w(x, y)


Ix(x, y, c)2 Ix(x, y, c)Iy(x, y, c)

Ix(x, y, c)Iy(x, y, c) Iy(x, y, c)2

�



Harris detector: inputs



Response of Harris operator



Threshold (f > value) 



Find local maxima of f



Question: Which of these transformations is 
the Harris detector invariant to?
• Rotation
• Translation
• ! "′ = %!(") (Contrast changes)
• Scaling  


