
Correspondence: Feature
detection

A general pipeline for correspondence

1. If sparse correspondences are enough, choose points for which we
will search for correspondences (feature points)

2. For each point (or every pixel if dense correspondence), describe
point using a feature descriptor

3. Find best matching descriptors across two images (feature
matching)

4. Use feature matches to perform downstream task, e.g., pose
estimation

Corner Detection: Basic Idea
• We should easily recognize the point by looking

through a small window
• Shifting a window in any direction should give a

large change in intensity

“edge”:
no change
along the edge
direction

“corner”:
significant
change in all
directions

“flat” region:
no change in
all directions

Source: A. Efros

Corner detection: math

• For every window !, define "($, &):
• appearance change if window is shifted by u in X and v in Y

• Good features: window appearance changes drastically when moved
1 pixel in any direction
• Mathematically, " $, & ≫ 0 ∀ $, &: $, + &, = 1
• Or alternatively: min

3,4: 3564578
"($, &) ≫ 0

Consider shifting the window W by (u,v)
• how do the pixels in W change?
• compare each pixel before and after by

summing up the squared differences (SSD)
• this defines an SSD “error” E(u,v):
! ", $
= &

',(∈*
+ , + ", . + $ − + ,, . 0

• We want E(u,v) to be as high as possible
for all u, v!

Corner detection: the math

W

Corner detection: the math

Consider shifting the window W by (u,v)
• define an SSD “error” E(u,v):

W

Corner detection: the math

Consider shifting the window W by (u,v)
• define an “error” E(u,v):

W

• Thus, E(u,v) is locally approximated as a quadratic error function

A more general formulation

• Maybe all pixels in the patch are not equally important
• Consider a “window function” !(#, %) that acts as weights
• ' (,) = ∑ ,,- ∈/ !(#, %) 0 # + (, % +) − 0 #, % 3

• Case till now:
• w(x,y) = 1 inside the window, 0 otherwise

Using a window function

• Change in appearance of window w(x,y) for the shift [u,v]:

[]2
,

(,) (,) (,) (,)
x y

E u v w x y I x u y v I x y= + + -å

IntensityShifted
intensity

Window
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside

Source: R. Szeliski

Redoing the derivation using a window
function
! ", $ = &

',(∈*
+(-, .) 0 - + ", . + $ − 0 -, . 3

≈ &
',(∈*

+ -, . 0 -, . + "0' -, . + $0(-, . − 0 -, . 3

= &
',(∈*

+ -, . "0' -, . + $0(-, .
3

= &
',(∈*

+ -, . ["30' -, . 3 + $30(-, . 3 + 2"$0' -, . 0(-, .]

Redoing the derivation using a window
function
•

! ", $ ≈ &
',(∈*

+ ,, - ["/0' ,, - / + $/0(,, - / + 2"$0' ,, - 0(,, -]

= 5"/ + 26"$ + 7$/
5 = &

',(∈*
+ ,, - 0' ,, - /

6 = &
',(∈*

+ ,, - 0' ,, - 0((,, -)

7 = &
',(∈*

+ ,, - 0(,, - /

The second moment matrix

Second moment matrix

M

M =
X

x,y2W

w(x, y)

Ix(x, y)2 Ix(x, y)Iy(x, y)

Ix(x, y)Iy(x, y) Iy(x, y)2

�

The second moment matrix

Second moment matrix

M =
X

x,y2W

w(x, y)

Ix(x, y)2 Ix(x, y)Iy(x, y)

Ix(x, y)Iy(x, y) Iy(x, y)2

�

! " = "$%"

The second moment matrix

• We want to find min
$: $ &'

$()$ to be high

• What does this mean in terms of)?

u v

E(u,v)
E(u,v) E(u,v) E(u,v)

v v vu u u

“Flat” patch

• All gradients are 0

• !" = $ ∀"
• min": " *+ "

,!" = 0

M =
X

x,y

w(x, y)

I2x IxIy
IxIy I2y

�

=

0 0
0 0

�

Vertical edge

• All Y derivatives are 0

• min$: $ &' $
()$ = 0

M =
X

x,y

w(x, y)

I2x IxIy
IxIy I2y

�

=

a 0
0 0

�

M

0
y

�
= 0 8y

Horizontal edge

• All Y derivatives are 0

• min$: $ &' $
()$ = 0

M =
X

x,y

w(x, y)

I2x IxIy
IxIy I2y

�

=

0 0
0 d

�

M

x
0

�
= 0 8x

What about edges in arbitrary orientation?

Solutions to Mx = 0 are directions for which E
is 0: window can slide in this direction
without changing appearance

! " = "$%"
%" = & ⇔ ! " = 0

What if no solution exists?

Quadratic functions and eigenvalues

• Consider an eigenvector ! of "
• "! = $!
• ! = 1
• !%"! = $!%! = $

• Theorem:
• min):) +, !

%"! = $-./ (smallest eigenvalue)

• max
):) +,

!%"! = $-2) (largest eigenvalue)

• Proof based on following additional facts:
• Eigenvectors form a basis for input space
• Eigenvectors can be chosen to be orthogonal to each other.

Eigenvalues and eigenvectors of the second
moment matrix

Eigenvalues and eigenvectors of M
• Define shift directions with the smallest and largest change in

appea
• xmax = direction of largest increase in E
• lmax = amount of increase in direction xmax

• xmin = direction of smallest increase in E
• lmin = amount of increase in direction xmin

xmin

xmax
M

M

E(u, v) ⇡
⇥
u v

⇤
M

u
v

�

Corner detection: the math
Want E(u,v) to be large for small shifts in all directions
• the minimum of E(u,v) should be large, over all unit

vectors [u v]
• this minimum is given by the smaller eigenvalue (lmin) of

M

!"#$ ≈ !"&' ≫ 0
E very high in all directions

Corner

!"#$ ≫ !"&', !"&' ≈ 0
E remains close to 0
along +"&'

Edge!"#$, !"&' are small;
E is almost 0 in all
directions Flat patch

!"&'

!"#$

Interpreting the eigenvalues

Computing the second moment matrix
efficiently

• Window function w(x,y) typically a
Gaussian centered on the window

• ! ", $ = &'
()(* +
,+ ' -)-* +

,+

• Need to compute this matrix
efficiently for every window location

M =
X

x,y2W

w(x, y)

Ix(x, y)2 Ix(x, y)Iy(x, y)

Ix(x, y)Iy(x, y) Iy(x, y)2

�

Computing the second moment matrix
efficiently

• Step 1: Place k x k window
• Step 2: Compute ∑",$∈&' (,) *" (,) + =
∑",$ -.

/0/1 2
32 . 4041 2

32 *" (,) + (similarly other terms)
• This can be expressed as a convolution!

M =
X

x,y2W

w(x, y)

Ix(x, y)2 Ix(x, y)Iy(x, y)

Ix(x, y)Iy(x, y) Iy(x, y)2

�

Computing the second moment matrix

• Compute image gradients !", !$ (both of these are images)
• Might want to blur with a Gaussian before doing this. Why?

• Compute !"%, !$%, !"!$ (these are images too)
• Convolve with windowing function (typically Gaussian)
• Assemble second moment matrix at every pixel

Corner detection summary
Here’s what you do

• Compute the gradient at each point in the image
• Create the M matrix from the entries in the gradient
• Compute the eigenvalues
• Find points with large response (lmin > threshold)
• Choose those points where lmin is a local maximum as features

Corner detection summary
Here’s what you do

• Compute the gradient at each point in the image
• Create the H matrix from the entries in the gradient
• Compute the eigenvalues.
• Find points with large response (lmin > threshold)
• Choose those points where lmin is a local maximum as features

Corner detection summary

• !"#$ is what we want but can be expensive to compute in every
window
• Alternatives?
• Fact:
• Determinant = product of eigenvalues = !"#$!"%&: high when both are high
• Trace = sum of eigenvalues = !"#$ + !"%&: high when at least one is high

• One variant:

• Many other variants possible

2
2121

2)()(trace)det(llalla +-=-= MMR

! > 0
Corner

! < 0
Edge

! ≈ 0
Flat patch

&'()

&'*+

Corner response function
2

2121
2)()(trace)det(llalla +-=-= MMR

The Harris operator

Harris
operator

Harris Detector [Harris88]

• Second moment matrix

ú
ú
û

ù

ê
ê
ë

é
*=

)()(
)()(

)(),(2

2

DyDyx

DyxDx
IDI III

III
g

ss
ss

sssµ

33

1. Image
derivatives

2. Square of
derivatives

3. Gaussian
filter g(sI)

Ix Iy

Ix2 Iy2 IxIy

g(Ix2) g(Iy2) g(IxIy)

222222)]()([)]([)()(yxyxyx IgIgIIgIgIg +-- a

=-=])),([trace()],(det[2
DIDIhar ssµassµ

4. Cornerness function – both eigenvalues are strong

har5. Non-maxima suppression

1 2

1 2

det
trace

M
M

l l
l l

=
= +

(optionally, blur first)

Harris detector

• Color images?
• Same derivation yields a different second moment matrix:

M =
X

x,y,c

w(x, y)

Ix(x, y, c)2 Ix(x, y, c)Iy(x, y, c)

Ix(x, y, c)Iy(x, y, c) Iy(x, y, c)2

�

Harris detector: inputs

Response of Harris operator

Threshold (f > value)

Find local maxima of f

Question: Which of these transformations is
the Harris detector invariant to?
• Rotation
• Translation
• ! "′ = %!(") (Contrast changes)
• Scaling

