## Correspondence: Feature detection

## A general pipeline for correspondence

1. If sparse correspondences are enough, choose points for which we will search for correspondences (feature points)
2. For each point (or every pixel if dense correspondence), describe point using a feature descriptor
3. Find best matching descriptors across two images (feature matching)
4. Use feature matches to perform downstream task, e.g., pose estimation

## Corner Detection: Basic Idea

- We should easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in intensity

"flat" region:
no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions


## Corner detection: math

- For every window $W$, define $E(u, v)$ :
- appearance change if window is shifted by $u$ in $X$ and $v$ in $Y$
- Good features: window appearance changes drastically when moved 1 pixel in any direction
- Mathematically, $E(u, v) \gg 0 \forall u, v: \sqrt{u^{2}+v^{2}}=1$
- Or alternatively: $\min _{u, v: \sqrt{u^{2}+v^{2}}=1} E(u, v) \gg 0$


## Corner detection: the math

Consider shifting the window $W$ by $(u, v)$

- how do the pixels in W change?
- compare each pixel before and after by summing up the squared differences (SSD)
- this defines an SSD "error" $E(u, v)$ : $E(u, v)$

$$
=\sum_{(x, y) \in W}[I(x+u, y+v)-I(x, y)]^{2}
$$

- We want $\mathrm{E}(\mathrm{u}, \mathrm{v})$ to be as high as possible for all $u, v$ !


## Corner detection: the math

Consider shifting the window $W$ by $(u, v)$

- define an SSD "error" $E(u, v)$ :


$$
\begin{aligned}
E(u, v) & =\sum_{(x, y) \in W}[I(x+u, y+v)-I(x, y)]^{2} \\
& \approx \sum_{(x, y) \in W}\left[I(x, y)+I_{x} u+I_{y} v-I(x, y)\right]^{2} \\
& \approx \sum_{(x, y) \in W}\left[I_{x} u+I_{y} v\right]^{2}
\end{aligned}
$$

## Corner detection: the math

Consider shifting the window $W$ by $(u, v)$

- define an "error" $E(u, v)$ :

$$
\begin{aligned}
& E(u, v) \approx \sum_{(x, y) \in W}\left[I_{x} u+I_{y} v\right]^{2} \\
& \approx A u^{2}+2 B u v+C v^{2} \\
& A=\sum_{(x, y) \in W} I_{x}^{2} \quad B=\sum_{(x, y) \in W} I_{x} I_{y} \quad C=\sum_{(x, y) \in W} I_{y}^{2}
\end{aligned}
$$

- Thus, $E(u, v)$ is locally approximated as a quadratic error function


## A more general formulation

- Maybe all pixels in the patch are not equally important
- Consider a "window function" $w(x, y)$ that acts as weights
- $E(u, v)=\sum_{(x, y) \in W} w(x, y)[I(x+u, y+v)-I(x, y)]^{2}$
- Case till now:
- $w(x, y)=1$ inside the window, 0 otherwise


## Using a window function

- Change in appearance of window $w(x, y)$ for the shift $[u, v]$ :


Window function $w(x, y)=$


1 in window, 0 outside


Gaussian

## Redoing the derivation using a window

 function$$
\begin{aligned}
& E(u, v)=\sum_{x, y \in W} w(x, y)[I(x+u, y+v)-I(x, y)]^{2} \\
& \approx \sum_{x, y \in W} w(x, y)\left[I(x, y)+u I_{x}(x, y)+v I_{y}(x, y)-I(x, y)\right]^{2} \\
& =\sum_{x, y \in W} w(x, y)\left[u I_{x}(x, y)+v I_{y}(x, y)\right]^{2} \\
& =\sum_{x, y \in W} w(x, y)\left[u^{2} I_{x}(x, y)^{2}+v^{2} I_{y}(x, y)^{2}+2 u v I_{x}(x, y) I_{y}(x, y)\right]
\end{aligned}
$$

## Redoing the derivation using a window function

$$
\begin{aligned}
& E(u, v) \approx \sum_{x, y \in W} w(x, y)\left[u^{2} I_{x}(x, y)^{2}+v^{2} I_{y}(x, y)^{2}+2 u v I_{x}(x, y) I_{y}(x, y)\right] \\
& =A u^{2}+2 B u v+C v^{2} \\
& A=\sum_{x, y \in W} w(x, y) I_{x}(x, y)^{2} \\
& B=\sum_{x, y \in W} w(x, y) I_{x}(x, y) I_{y}(x, y) \\
& C=\sum_{x, y \in W} w(x, y) I_{y}(x, y)^{2}
\end{aligned}
$$

## The second moment matrix

$$
\begin{gathered}
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] \underbrace{\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]}_{M}\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
M=\sum_{x, y \in W} w(x, y)\left[\begin{array}{cc}
I_{x}(x, y)^{2} & I_{x}(x, y) I_{y}(x, y) \\
I_{x}(x, y) I_{y}(x, y) & I_{y}(x, y)^{2}
\end{array}\right]
\end{gathered}
$$

Second moment matrix

## The second moment matrix

$$
\begin{gathered}
E(\boldsymbol{p})=\boldsymbol{p}^{T} M \boldsymbol{p} \\
M=\sum_{x, y \in W} w(x, y)\left[\begin{array}{cc}
I_{x}(x, y)^{2} & I_{x}(x, y) I_{y}(x, y) \\
I_{x}(x, y) I_{y}(x, y) & I_{y}(x, y)^{2}
\end{array}\right]
\end{gathered}
$$

Second moment matrix

## The second moment matrix

- We want to find $\min _{p:\|\boldsymbol{p}\|=1} \boldsymbol{p}^{T} M \boldsymbol{p}$ to be high
- What does this mean in terms of $M$ ?



## "Flat" patch

- All gradients are 0

$$
\begin{aligned}
M & =\sum_{x, y} w(x, y)\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$



- $M \boldsymbol{p}=\mathbf{0} \forall \boldsymbol{p}$
- $\min _{\boldsymbol{p}:\|\boldsymbol{p}\|=1} \boldsymbol{p}^{T} M \boldsymbol{p}=0$


## Vertical edge

- All Y derivatives are 0

$$
\begin{aligned}
M & =\sum_{x, y} w(x, y)\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right] \\
& =\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$



$$
M\left[\begin{array}{l}
0 \\
y
\end{array}\right]=\mathbf{0} \quad \forall y
$$

- $\min _{p:\|\boldsymbol{p}\|=1} \boldsymbol{p}^{T} M \boldsymbol{p}=0$


## Horizontal edge

- All Y derivatives are 0

$$
\begin{aligned}
M & =\sum_{x, y} w(x, y)\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 0 \\
0 & d
\end{array}\right]
\end{aligned}
$$



$$
M\left[\begin{array}{l}
x \\
0
\end{array}\right]=\mathbf{0} \quad \forall x
$$

- $\min _{p:\|\boldsymbol{p}\|=1} \boldsymbol{p}^{T} M \boldsymbol{p}=0$

What about edges in arbitrary orientation?


$$
\begin{gathered}
E(\boldsymbol{p})=\boldsymbol{p}^{T} M \boldsymbol{p} \\
M \boldsymbol{p}=\mathbf{0} \Leftrightarrow E(\boldsymbol{p})=0
\end{gathered}
$$

Solutions to $\mathrm{Mx}=0$ are directions for which E is 0 : window can slide in this direction without changing appearance

What if no solution exists?

## Quadratic functions and eigenvalues

- Consider an eigenvector $x$ of $M$
- $M x=\lambda x$
- $\|x\|=1$
- $x^{T} M x=\lambda x^{T} x=\lambda$
- Theorem:
- $\min _{x:\|x\|=1} x^{T} M x=\lambda_{\text {min }}$ (smallest eigenvalue)
- $\max _{x:\|x\|=1} x^{T} M x=\lambda_{\max }$ (largest eigenvalue)
- Proof based on following additional facts:
- Eigenvectors form a basis for input space
- Eigenvectors can be chosen to be orthogonal to each other.


## Eigenvalues and eigenvectors of the second moment matrix

$$
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$



Eigenvalues and eigenvectors of $M$

- Define shift directions with the smallest and largest change in appea
- $\mathrm{x}_{\text {max }}=$ direction of largest increase in $E$
- $\lambda_{\text {max }}=$ amount of increase in direction $x_{\text {max }}$
- $x_{\text {min }}=$ direction of smallest increase in $E$
- $\lambda_{\min }=$ amount of increase in direction $x_{\min }$


## Corner detection: the math

Want $E(u, v)$ to be large for small shifts in all directions

- the minimum of $E(u, v)$ should be large, over all unit vectors [u v]
- this minimum is given by the smaller eigenvalue $\left(\lambda_{\text {min }}\right)$ of M


I

$\lambda_{\text {max }}$

$\lambda_{\text {min }}$

## Interpreting the eigenvalues



## Computing the second moment matrix

 efficiently$M=\sum_{x, y \in W} w(x, y)\left[\begin{array}{cc}I_{x}(x, y)^{2} & I_{x}(x, y) I_{y}(x, y) \\ I_{x}(x, y) I_{y}(x, y) & I_{y}(x, y)^{2}\end{array}\right]$

- Window function $w(x, y)$ typically a Gaussian centered on the window
- $w(x, y)=e^{-\frac{\left(x-x_{0}\right)^{2}}{\sigma^{2}}-\frac{\left(y-y_{0}\right)^{2}}{\sigma^{2}}}$
- Need to compute this matrix efficiently for every window location

$I$


## Computing the second moment matrix efficiently

$$
M=\sum_{x, y \in W} w(x, y)\left[\begin{array}{cc}
I_{x}(x, y)^{2} & I_{x}(x, y) I_{y}(x, y) \\
I_{x}(x, y) I_{y}(x, y) & I_{y}(x, y)^{2}
\end{array}\right]
$$

- Step 1: Place k x k window
- Step 2: Compute $\sum_{x, y \in W} w(x, y) I_{x}(x, y)^{2}=$ $\sum_{x, y} e^{-\frac{\left(x-x_{0}\right)^{2}}{\sigma^{2}}-\frac{\left(y-y_{0}\right)^{2}}{\sigma^{2}}} I_{x}(x, y)^{2}$ (similarly other terms)
- This can be expressed as a convolution!


## Computing the second moment matrix

- Compute image gradients $I_{x}, I_{y}$ (both of these are images)
- Might want to blur with a Gaussian before doing this. Why?
- Compute $I_{x}^{2}, I_{y}^{2}, I_{x} I_{y}$ (these are images too)
- Convolve with windowing function (typically Gaussian)
- Assemble second moment matrix at every pixel


## Corner detection summary

Here's what you do

- Compute the gradient at each point in the image
- Create the $M$ matrix from the entries in the gradient
- Compute the eigenvalues
- Find points with large response ( $\lambda_{\text {min }}>$ threshold)
- Choose those points where $\lambda_{\text {min }}$ is a local maximum as features


I

$\lambda_{\text {max }}$

$\lambda_{\text {min }}$

## Corner detection summary

Here's what you do

- Compute the gradient at each point in the image
- Create the $H$ matrix from the entries in the gradient
- Compute the eigenvalues.
- Find points with large response ( $\lambda_{\text {min }}>$ threshold)
- Choose those points where $\lambda_{\min }$ is a local maximum as features



## Corner detection summary

- $\lambda_{\text {min }}$ is what we want but can be expensive to compute in every window
- Alternatives?
- Fact:
- Determinant $=$ product of eigenvalues $=\lambda_{\min } \lambda_{\max }$ : high when both are high
- Trace $=$ sum of eigenvalues $=\lambda_{\text {min }}+\lambda_{\text {max }}$ : high when at least one is high
- One variant:

$$
R=\operatorname{det}(M)-\alpha \operatorname{trace}(M)^{2}=\lambda_{1} \lambda_{2}-\alpha\left(\lambda_{1}+\lambda_{2}\right)^{2}
$$

- Many other variants possible

Corner response function $R=\operatorname{det}(M)-\alpha \operatorname{trace}(M)^{2}=\lambda_{1} \lambda_{2}-\alpha\left(\lambda_{1}+\lambda_{2}\right)^{2}$


## The Harris operator



## Harris Detector ${ }_{\text {HHaris88] }}$

- Second moment matrix


4. Cornerness function - both eigenvalues are strong

$$
\begin{aligned}
& \text { har }=\operatorname{det}\left[\mu\left(\sigma_{I}, \sigma_{D}\right)\right]-\alpha\left[\operatorname{trace}\left(\mu\left(\sigma_{I}, \sigma_{D}\right)\right)^{2}\right]= \\
& g\left(I_{x}^{2}\right) g\left(I_{y}^{2}\right)-\left[g\left(I_{x} I_{y}\right)\right]^{2}-\alpha\left[g\left(I_{x}^{2}\right)+g\left(I_{y}^{2}\right)\right]^{2}
\end{aligned}
$$



## Harris detector

- Color images?
- Same derivation yields a different second moment matrix:

$$
M=\sum_{x, y, c} w(x, y)\left[\begin{array}{cc}
I_{x}(x, y, c)^{2} & I_{x}(x, y, c) I_{y}(x, y, c) \\
I_{x}(x, y, c) I_{y}(x, y, c) & I_{y}(x, y, c)^{2}
\end{array}\right]
$$

Harris detector: inputs


Response of Harris operator


Threshold (f > value)


Find local maxima of $f$


## Question: Which of these transformations is the Harris detector invariant to?

- Rotation
- Translation
- $I\left(x^{\prime}\right)=a I(x)$ (Contrast changes)
- Scaling

