Reconstruction

Reconstruction

* Given an image, can we reconstruct the 3D world that created the
image?

Why is reconstruction hard?

* Perspective projection

_fx _fY
'x—7+px»y—7+py
* Simplecase: f = 1,p, =p, =0
ox:i
Z
Y
Oy=z

e (X,Y,Z) and (1X,AY, AZ) project to the same point!

* “lll-posed problem”

Why is reconstruction hard?

image
plane

viewpoint

pixel
position

viewing ray

© 2020 Steve Marschner

One way out: multiple images

* Multiple images can give a clue about 3D structure

One way out: multiple images

 Parallax: nearby objects move more than far away objects

One way out: multiple images

One way out: multiple images

 Step 1: Need to find correspondences between pixels in image 1 and
image 2

 Step 2: Use correspondences to locate pointin 3D

Reconstruction from correspondence

* Given known cameras, correspondence gives the location of 3D point
(Triangulation)

S

Reconstruction from correspondence

* Given a 3D point, correspondence gives relationship between
cameras (Pose estimation / camera calibration)

SR

Next few classes

* How do we find correspondences?

* How do we use correspondences to reconstruct 3D?

ions of correspondence

Icat

Other appl

* Image alighment
* Motion tracking
* Robot navigation

Easy correspondence

by Diva Sian

http://www.flickr.com/photos/diaphanus/136915456/
http://www.flickr.com/photos/swashford/428567562/

Harder case

by scgbt

by Diva Sian

http://www.flickr.com/photos/diaphanus/136915456/
http://www.flickr.com/photos/scpgt/328570837/

Harder still?

Answer below (look for tiny colored squares...)

NASA Mars Rover images
with SIFT feature matches

Sparse vs dense correspondence

e Sparse correspondence: produce a few, high confidence
matches

* Good enough for estimating pose or relationship between cameras
* Easier

* Dense correspondence: try to match every pixel

A general pipeline for correspondence

1. Feature detection: If sparse correspondences are enough, choose
points for which we will search for correspondences (feature points)

2. Feature description: For each point (or every pixel if dense
correspondence), describe point using a feature descriptor

3. Feature matching: Find best matching descriptors across two
images (feature matching)

4. Use feature matches to perform downstream task, e.g., pose
estimation

Characteristics of good feature
points

« Repeatability / invariance

« The same feature point can be found in several images despite
geometric and photometric transformations

« Saliency / distinctiveness
» Each feature point is distinctive
» Fewer "false” matches

Goal: repeatability

e We want to detect (at least some of) the same points in both images.

No chance to find true matches!

e Yet we have to be able to run the detection procedure independently per
image.

Kristen Grauman

Goal: distinctiveness

* The feature point should be distinctive enough that it is easy to match
* Should at least be distinctive from other patches nearby

The aperture problem

* A single pixel by itself is not distinctive

Input pixel '

Pixel .

appearance

Matching
pixels

The aperture problem

* Individual pixels are ambiguous
* |dea: Look at whole patches!

e

The aperture problem

* Individual pixels are ambiguous

* |dea: Look at whole patches!

Input patch Matching
patch centers

The aperture problem

* Patches can be ambiguous too!

* What patches are distinctive?

s

The aperture problem

e Corners are distinctive!
* How do we define/find corners?

«

Corner detection

* Main idea: Translating window should cause large differences in patch
appearance

Corner Detection: Basic Idea

« We should easily recognize the point by looking
through a small window

« Shifting a window in any direction should give a
large change in intensity

“flat” region:
no change in
all directions

Source: A. Efros

“edge’:

no change
along the edge
direction

V\

'

‘corner’;
significant
change in all
directions

Corner detection the math

* Consider shifting the window W
by (u,v)
e how do the pixels in W change?
e Write pixels in window as a vector:

¢o = [1(0,0),1(0,1),...,1(n,n)]

o1 =10+ u,04+v),I(04+u,14+wv),...,I(n+un+v)]

E(u,v) = [l¢o — ¢1l3

Corner detection: the math

Consider shifting the window W by (u,v)

e how do the pixels in W change?

e compare each pixel before and after by
summing up the squared differences (SSD)

e this defines an SSD “error” E(u,v):
E(u,v)

— 2 I(x+u,y+v) —I(x;Y)]Z
(x,y)EW

e We want E(u,v) to be as high as possible
forallu, v!

Small motion assumption

Taylor Series expansion of /:

I(z4u,y+v) = I(x,y) g Fhigher order terms

If the motion (u,v) is small, then first order approximation is good

I(:z:—l—uy—l—v)~[(:1:y)—|— -|—
~ I(z,y) + [z Iy][v]

shorthand: I, = gé

Plugging this into the formula on the previous slide...

Corner detection: the math

Consider shifting the window W by (u,v)

w
e define an SSD “error” E(u,v):
E(wv) = Y [He+uy+v)—I(zy)
(z,y)eW
~ > U(2y) + Lu+ Ly — I(a,y)]
(x,y)eW

&

Z Leu+ I:@/U]Q

(z,y)eW

Corner detection: the math

Consider shifting the window W by (u,v)

e define an “error” E(u,v):

E(u,v) =~ Z Lo+ Iv]°

(z,y)eW
~ Au? 4+ 2Buv + Cv?

A= > I B= Y LI, C=) I

(x,y)eW (x,y)eW (z,y)eW

e Thus, E(u,v) is locally approximated as a quadratic error function

A more general formulation

* Maybe all pixels in the patch are not equally important
* Consider a “window function” w(x, y) that acts as weights
*Ew,v) = Xoypyew W I(x +u,y +v) — 1(x,)]

* Case till now:
* w(x,y) =1 inside the window, 0 otherwise

Using a window function

* Change in appearance of window w(x,y) for the shift [u,V]:

E(u,v)= Zw(x,y)[[(x+u,y+v)—I(x,y):

Window Shifted
function intensity

Window function W(X,y) = JP—

2

(Intensity)

1 in window, O outside Gaussian

Source: R. Szeliski

Redoing the derivation using a window
function

E(uv) = Z w(x,y) [I(x+u,y+v)—1(x,v)]
X, yeEW

~ Y wee[1Gey) +uly(xy) + vl (o) — 1@)]
xX,yeEW

= z W(x,y)[ulx(x,y)+171y(x»3’)]2

xX,yeEW

_ Z w e,) [WP L (x, ¥)? + v21, (x,)% + 2uvl, (x,)L, (x,)]
xX,yeEW

Redoing the derivation using a window
function

Ev) ~) wio [tk y)? +v2Ly (6 y)? + 2uvly(x,)1, ()]
xX,yEW
= Au® + ZBuv + Cv*

A= z w(x,)L (x, y)?

xX,YEW

B = 2 w(x, y) L (x, y) L, (x,y)

xX,YEW

C=) W)’

X,YVEW

The second moment matrix

E(u,v) ~ [u v]{é gHH

M =

x,yecW
—

\ J

'
M

w(z,y) I (z,y) 1y (x,y)

I (7 922 I (,

V
Second moment matrix

The second moment matrix

E(u,v) ~ [u v]{é gHH

Second moment matrix
Recall that we want E(u,v) to be as large as possible
for all u,v

What does this mean in terms of M?

(x,y)eW
B= Y LI,
(z,y)eW
c- Y
(x,y)eW

Flat patch:

I, =0
I, =0

e

E(u,

Of}

v) =0 VYu,v

(x,y)eW
B= Y LI,
(z,y)eW
C=) I
(x,y)eW

Vertical edge:]y — O

Horizontal edge: [, = ()

What about edges in arbitrary orientation?

-

M = & E(u,v) =0

Solutions to Mx = 0 are directions for which E
is 0: window can slide in this direction
without changing appearance

Uu

Eu,v)~| u v |M)

Solutions to Mx = 0 are directions for which E
is 0: window can slide in this direction
without changing appearance

For corners, we want no such directions to

R

NNV

N VAVANAVANAN

\NANANANANANANAN

Eigenvalues and eigenvectors of M

e Mx = 0= Mx = Ax: x is an eigenvector of M with
eigenvalue 0

* Mis 2 x2,so it has 2 eigenvalues (4,45 Amin) With
eigenvectors (X;,qx Xmin)

_ T _ 2 _
* E(xmax) — xmaxMxmax — Amaxl |meLX|| _ Amax
(eigenvectors have unit norm)

N _ —
* E(xmin) = XminMXmin = Amin| [Xmin]| |2 = Amin

Eigenvalues and eigenvectors of M

u

Eu,v)= | u v |M)

Xmin

M ZTmax =)\maxxmax
Xmax

Lmin — >\min Lmin

Eigenvalues and eigenvectors of M
e Define shift directions with the smallest and largest change in error
e Xx...=direction of largest increase in E
* A..« = amount of increase in direction x,,,
e Xx...=direction of smallest increase in E
* A.., =amount of increase in direction x,,

Interpreting the eigenvalues

Amin

E is almost 0 in all

directions

Flat patch

Edge

Amax > Aminr Amin ~ 0
E remains close to O

along x,,,in

Amax

