Reconstruction

Reconstruction

- Given an image, can we reconstruct the 3D world that created the image?

Why is reconstruction hard?

- Perspective projection
- $x=\frac{f X}{z}+p_{x}, y=\frac{f Y}{z}+p_{y}$
- Simple case: $f=1, p_{x}=p_{y}=0$
- $x=\frac{X}{Z}$
- $y=\frac{Y}{Z}$
- (X, Y, Z) and ($\lambda X, \lambda Y, \lambda Z)$ project to the same point!
- "III-posed problem"

Why is reconstruction hard?

One way out: multiple images

- Multiple images can give a clue about 3D structure

One way out: multiple images

- Parallax: nearby objects move more than far away objects

One way out: multiple images

One way out: multiple images

- Step 1: Need to find correspondences between pixels in image 1 and image 2
- Step 2: Use correspondences to locate point in 3D

Reconstruction from correspondence

- Given known cameras, correspondence gives the location of 3D point (Triangulation)

Reconstruction from correspondence

- Given a 3D point, correspondence gives relationship between cameras (Pose estimation / camera calibration)

Next few classes

- How do we find correspondences?
- How do we use correspondences to reconstruct 3D?

Other applications of correspondence

- Image alignment
- Motion tracking
- Robot navigation

Easy correspondence

by Diva Sian

by swashford

Harder case

by Diva Sian

by scgbt

Harder still?

Answer below (look for tiny colored squares...)

NASA Mars Rover images
with SIFT feature matches

Sparse vs dense correspondence

- Sparse correspondence: produce a few, high confidence matches
- Good enough for estimating pose or relationship between cameras
- Easier
- Dense correspondence: try to match every pixel
- Needed if we want 3D location of every pixel

A general pipeline for correspondence

1. Feature detection: If sparse correspondences are enough, choose points for which we will search for correspondences (feature points)
2. Feature description: For each point (or every pixel if dense correspondence), describe point using a feature descriptor
3. Feature matching: Find best matching descriptors across two images (feature matching)
4. Use feature matches to perform downstream task, e.g., pose estimation

Characteristics of good feature points

- Repeatability / invariance
- The same feature point can be found in several images despite geometric and photometric transformations
- Saliency / distinctiveness
- Each feature point is distinctive
- Fewer "false" matches

Goal: repeatability

- We want to detect (at least some of) the same points in both images.

- Yet we have to be able to run the detection procedure independently per image.

Goal: distinctiveness

- The feature point should be distinctive enough that it is easy to match
- Should at least be distinctive from other patches nearby

The aperture problem

- A single pixel by itself is not distinctive

Pixel
appearance

The aperture problem

- Individual pixels are ambiguous
- Idea: Look at whole patches!

The aperture problem

- Individual pixels are ambiguous
- Idea: Look at whole patches!

Matching patch centers

The aperture problem

- Patches can be ambiguous too!
- What patches are distinctive?

The aperture problem

- Corners are distinctive!
- How do we define/find corners?

Corner detection

- Main idea: Translating window should cause large differences in patch appearance

Corner Detection: Basic Idea

- We should easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in intensity

"flat" region:
no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Corner detection the math

- Consider shifting the window W by (u, v)
- how do the pixels in W change?
- Write pixels in window as a vector:

$$
\begin{aligned}
\phi_{0} & =[I(0,0), I(0,1), \ldots, I(n, n)] \\
\phi_{1} & =[I(0+u, 0+v), I(0+u, 1+v), \ldots, I(n+u, n+v)]
\end{aligned}
$$

$$
E(u, v)=\left\|\phi_{0}-\phi_{1}\right\|_{2}^{2}
$$

Corner detection: the math

Consider shifting the window W by (u, v)

- how do the pixels in W change?
- compare each pixel before and after by summing up the squared differences (SSD)
- this defines an SSD "error" $E(u, v)$: $E(u, v)$

$$
=\sum_{(x, y) \in W}[I(x+u, y+v)-I(x, y)]^{2}
$$

- We want $\mathrm{E}(\mathrm{u}, \mathrm{v})$ to be as high as possible for all u, v !

Small motion assumption

Taylor Series expansion of I :

$$
I(x+u, y+v)=I(x, y)+\frac{\partial I}{\partial x} u+\frac{\partial I}{\partial y} v+\text { higher order terms }
$$

If the motion (u, v) is small, then first order approximation is good

$$
\begin{aligned}
I(x+u, y+v) & \approx I(x, y)+\frac{\partial I}{\partial x} u+\frac{\partial I}{\partial y} v \\
& \approx I(x, y)+\left[\begin{array}{ll}
I_{x} & I_{y}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
& \text { shorthand: } I_{x}=\frac{\partial I}{\partial x}
\end{aligned}
$$

Plugging this into the formula on the previous slide...

Corner detection: the math

Consider shifting the window W by (u, v)

- define an SSD "error" $E(u, v)$:

$$
\begin{aligned}
E(u, v) & =\sum_{(x, y) \in W}[I(x+u, y+v)-I(x, y)]^{2} \\
& \approx \sum_{(x, y) \in W}\left[I(x, y)+I_{x} u+I_{y} v-I(x, y)\right]^{2} \\
& \approx \sum_{(x, y) \in W}\left[I_{x} u+I_{y} v\right]^{2}
\end{aligned}
$$

Corner detection: the math

Consider shifting the window W by (u, v)

- define an "error" $E(u, v)$:

$$
\begin{aligned}
& E(u, v) \approx \sum_{(x, y) \in W}\left[I_{x} u+I_{y} v\right]^{2} \\
& \approx A u^{2}+2 B u v+C v^{2} \\
& A=\sum_{(x, y) \in W} I_{x}^{2} \quad B=\sum_{(x, y) \in W} I_{x} I_{y} \quad C=\sum_{(x, y) \in W} I_{y}^{2}
\end{aligned}
$$

- Thus, $E(u, v)$ is locally approximated as a quadratic error function

A more general formulation

- Maybe all pixels in the patch are not equally important
- Consider a "window function" $w(x, y)$ that acts as weights
- $E(u, v)=\sum_{(x, y) \in W} w(x, y)[I(x+u, y+v)-I(x, y)]^{2}$
- Case till now:
- $w(x, y)=1$ inside the window, 0 otherwise

Using a window function

- Change in appearance of window $w(x, y)$ for the shift $[u, v]$:

Window function $w(x, y)=$

1 in window, 0 outside

Gaussian

Redoing the derivation using a window

 function$$
\begin{aligned}
& E(u, v)=\sum_{x, y \in W} w(x, y)[I(x+u, y+v)-I(x, y)]^{2} \\
& \approx \sum_{x, y \in W} w(x, y)\left[I(x, y)+u I_{x}(x, y)+v I_{y}(x, y)-I(x, y)\right]^{2} \\
& =\sum_{x, y \in W} w(x, y)\left[u I_{x}(x, y)+v I_{y}(x, y)\right]^{2} \\
& =\sum_{x, y \in W} w(x, y)\left[u^{2} I_{x}(x, y)^{2}+v^{2} I_{y}(x, y)^{2}+2 u v I_{x}(x, y) I_{y}(x, y)\right]
\end{aligned}
$$

Redoing the derivation using a window function

$$
\begin{aligned}
& E(u, v) \approx \sum_{x, y \in W} w(x, y)\left[u^{2} I_{x}(x, y)^{2}+v^{2} I_{y}(x, y)^{2}+2 u v I_{x}(x, y) I_{y}(x, y)\right] \\
& =A u^{2}+2 B u v+C v^{2} \\
& A=\sum_{x, y \in W} w(x, y) I_{x}(x, y)^{2} \\
& B=\sum_{x, y \in W} w(x, y) I_{x}(x, y) I_{y}(x, y) \\
& C=\sum_{x, y \in W} w(x, y) I_{y}(x, y)^{2}
\end{aligned}
$$

The second moment matrix

Second moment matrix

The second moment matrix

$$
\begin{gathered}
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] \underbrace{\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]}_{M}\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
M=\underbrace{\sum_{\substack{\text { Second moment matrix }}} w(x, y)\left[\begin{array}{cc}
I_{x}(x, y)^{2} & I_{x}(x, y) I_{y}(x, y) \\
I_{x}(x, y) I_{y}(x, y) & I_{y}(x, y)^{2}
\end{array}\right]}_{\substack{M \\
\text { Recall that we want } \mathrm{E}(\mathrm{u}, \mathrm{v}) \text { to be as large as possible } \\
\text { for all } \mathrm{u}, \mathrm{v}}}
\end{gathered}
$$

What does this mean in terms of M ?

$$
\begin{gathered}
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] \underbrace{\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]}_{M}\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
A=\sum_{(x, y) \in W} I_{x}^{2} \\
B=\sum_{(x, y) \in W} I_{x} I_{y} \\
C=\sum_{(x, y) \in W} I_{y}^{2}
\end{gathered} \begin{aligned}
& M=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& M\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& E(u, v)=0 \quad \forall u, v \\
& \text { Fat patch: } \begin{array}{l}
I_{x}=0 \\
I_{y}=0
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] \underbrace{\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]}_{M}\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
A=\sum_{(x, y) \in W} I_{x}^{2} \\
B=\sum_{(x, y) \in W} I_{x} I_{y} \\
C=\sum_{(x, y) \in W} I_{y}^{2} \\
\\
\\
\text { Vertical edge: } I_{y}=0
\end{gathered} \quad M=\left[\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right]
$$

$$
\begin{gathered}
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] \underbrace{\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]}_{M}\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
A=\sum_{(x, y) \in W} I_{x}^{2} \\
B=\sum_{(x, y) \in W} I_{x} I_{y} \\
C=\sum_{(x, y) \in W} I_{y}^{2} \\
M
\end{gathered} \quad \begin{aligned}
& M r=\left[\begin{array}{ll}
0 & 0 \\
0 & C
\end{array}\right] \\
& M\left[\begin{array}{l}
u \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& E(u, 0)=0 \forall u
\end{aligned}
$$

What about edges in arbitrary orientation?

$$
\begin{gathered}
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
M\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Leftrightarrow E(u, v)=0
\end{gathered}
$$

Solutions to $\mathrm{Mx}=0$ are directions for which E is 0 : window can slide in this direction without changing appearance

$$
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

Solutions to $\mathrm{Mx}=0$ are directions for which E is 0 : window can slide in this direction without changing appearance

For corners, we want no such directions to exist

Eigenvalues and eigenvectors of M

- $M x=0 \Rightarrow M x=\lambda x: \mathrm{x}$ is an eigenvector of M with eigenvalue 0
- M is 2×2, so it has 2 eigenvalues $\left(\lambda_{\max }, \lambda_{\min }\right)$ with eigenvectors ($x_{\text {max }}, x_{\text {min }}$)
- $E\left(x_{\text {max }}\right)=x_{\text {max }}^{T} M x_{\text {max }}=\lambda_{\text {max }}\left\|x_{\text {max }}\right\|^{2}=\lambda_{\text {max }}$ (eigenvectors have unit norm)
- $E\left(x_{\text {min }}\right)=x_{\text {min }}^{T} M x_{\text {min }}=\lambda_{\text {min }}\left\|x_{\text {min }}\right\|^{2}=\lambda_{\text {min }}$

Eigenvalues and eigenvectors of M

$$
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

$$
\begin{aligned}
\mathrm{M} x_{\max } & =\lambda_{\max } x_{\max } \\
\mathrm{M} \cdot x_{\min } & =\lambda_{\min } x_{\min }
\end{aligned}
$$

Eigenvalues and eigenvectors of M

- Define shift directions with the smallest and largest change in error
- $\mathrm{x}_{\max }=$ direction of largest increase in E
- $\lambda_{\max }=$ amount of increase in direction $x_{\max }$
- $x_{\text {min }}=$ direction of smallest increase in E
- $\lambda_{\text {min }}=$ amount of increase in direction $x_{\text {min }}$

Interpreting the eigenvalues

