
Reconstruction

Reconstruction

• Given an image, can we reconstruct the 3D world that created the
image?

Why is reconstruction hard?

• Perspective projection
• ! = #$

% + '(, * =
#+
% + ',

• Simple case: - = 1, '(= ', = 0
• ! = $

%
• * = +

%
• 0, 1, 2 and (40, 41, 42) project to the same point!
• “Ill-posed problem”

Why is reconstruction hard?

One way out: multiple images

• Multiple images can give a clue about 3D structure

One way out: multiple images

• Parallax: nearby objects move more than far away objects

One way out: multiple images

One way out: multiple images

• Step 1: Need to find correspondences between pixels in image 1 and
image 2
• Step 2: Use correspondences to locate point in 3D

Reconstruction from correspondence

• Given known cameras, correspondence gives the location of 3D point
(Triangulation)

Reconstruction from correspondence

• Given a 3D point, correspondence gives relationship between
cameras (Pose estimation / camera calibration)

Next few classes

• How do we find correspondences?

• How do we use correspondences to reconstruct 3D?

Other applications of correspondence
• Image alignment
• Motion tracking
• Robot navigation

Easy correspondence

by Diva Sian

by swashford

http://www.flickr.com/photos/diaphanus/136915456/
http://www.flickr.com/photos/swashford/428567562/

Harder case

by Diva Sian by scgbt

http://www.flickr.com/photos/diaphanus/136915456/
http://www.flickr.com/photos/scpgt/328570837/

Harder still?

NASA Mars Rover images
with SIFT feature matches

Answer below (look for tiny colored squares…)

Sparse vs dense correspondence
• Sparse correspondence: produce a few, high confidence

matches
• Good enough for estimating pose or relationship between cameras
• Easier

• Dense correspondence: try to match every pixel
• Needed if we want 3D location of every pixel

A general pipeline for correspondence

1. Feature detection: If sparse correspondences are enough, choose
points for which we will search for correspondences (feature points)

2. Feature description: For each point (or every pixel if dense
correspondence), describe point using a feature descriptor

3. Feature matching: Find best matching descriptors across two
images (feature matching)

4. Use feature matches to perform downstream task, e.g., pose
estimation

Snoop demo

What makes a good feature point?

Characteristics of good feature
points

• Repeatability / invariance
• The same feature point can be found in several images despite

geometric and photometric transformations

• Saliency / distinctiveness
• Each feature point is distinctive
• Fewer ”false” matches

Goal: repeatability
• We want to detect (at least some of) the same points in both images.

• Yet we have to be able to run the detection procedure independently per
image.

No chance to find true matches!

Kristen Grauman

Goal: distinctiveness

• The feature point should be distinctive enough that it is easy to match
• Should at least be distinctive from other patches nearby

????

The aperture problem

• A single pixel by itself is not distinctive

Input pixel

Pixel
appearance

Matching
pixels

The aperture problem

• Individual pixels are ambiguous
• Idea: Look at whole patches!

The aperture problem

• Individual pixels are ambiguous
• Idea: Look at whole patches!

Input patch Matching
patch centers

The aperture problem
• Patches can be ambiguous too!
• What patches are distinctive?

The aperture problem

• Corners are distinctive!
• How do we define/find corners?

Corner detection

• Main idea: Translating window should cause large differences in patch
appearance

Corner Detection: Basic Idea
• We should easily recognize the point by looking

through a small window
• Shifting a window in any direction should give a

large change in intensity

“edge”:
no change
along the edge
direction

“corner”:
significant
change in all
directions

“flat” region:
no change in
all directions

Source: A. Efros

Corner detection the math

• Consider shifting the window W
by (u,v)
• how do the pixels in W change?

• Write pixels in window as a vector: W

�0 = [I(0, 0), I(0, 1), . . . , I(n, n)]

�1 = [I(0 + u, 0 + v), I(0 + u, 1 + v), . . . , I(n+ u, n+ v)]

E(u, v) = k�0 � �1k22
=

X

(x,y)2W

(I(x, y)� I(x+ u, y + v))2

Consider shifting the window W by (u,v)
• how do the pixels in W change?
• compare each pixel before and after by

summing up the squared differences (SSD)
• this defines an SSD “error” E(u,v):
! ", $
= &

',(∈*
+ , + ", . + $ − + ,, . 0

• We want E(u,v) to be as high as possible
for all u, v!

Corner detection: the math

W

Taylor Series expansion of I:

If the motion (u,v) is small, then first order approximation is good

Plugging this into the formula on the previous slide…

Small motion assumption

Corner detection: the math

Consider shifting the window W by (u,v)
• define an SSD “error” E(u,v):

W

Corner detection: the math

Consider shifting the window W by (u,v)
• define an “error” E(u,v):

W

• Thus, E(u,v) is locally approximated as a quadratic error function

A more general formulation

• Maybe all pixels in the patch are not equally important
• Consider a “window function” !(#, %) that acts as weights
• ' (,) = ∑ ,,- ∈/ !(#, %) 0 # + (, % +) − 0 #, % 3

• Case till now:
• w(x,y) = 1 inside the window, 0 otherwise

Using a window function

• Change in appearance of window w(x,y) for the shift [u,v]:

[]2
,

(,) (,) (,) (,)
x y

E u v w x y I x u y v I x y= + + -å

IntensityShifted
intensity

Window
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside

Source: R. Szeliski

Redoing the derivation using a window
function
! ", $ = &

',(∈*
+(-, .) 0 - + ", . + $ − 0 -, . 3

≈ &
',(∈*

+ -, . 0 -, . + "0' -, . + $0(-, . − 0 -, . 3

= &
',(∈*

+ -, . "0' -, . + $0(-, .
3

= &
',(∈*

+ -, . ["30' -, . 3 + $30(-, . 3 + 2"$0' -, . 0(-, .]

Redoing the derivation using a window
function
•

! ", $ ≈ &
',(∈*

+ ,, - ["/0' ,, - / + $/0(,, - / + 2"$0' ,, - 0(,, -]

= 5"/ + 26"$ + 7$/
5 = &

',(∈*
+ ,, - 0' ,, - /

6 = &
',(∈*

+ ,, - 0' ,, - 0((,, -)

7 = &
',(∈*

+ ,, - 0(,, - /

The second moment matrix

Second moment matrix

M

M =
X

x,y2W

w(x, y)


Ix(x, y)2 Ix(x, y)Iy(x, y)

Ix(x, y)Iy(x, y) Iy(x, y)2

�

The second moment matrix

Second moment matrix

M

Recall that we want E(u,v) to be as large as possible
for all u,v

What does this mean in terms of M?

M =
X

x,y2W

w(x, y)


Ix(x, y)2 Ix(x, y)Iy(x, y)

Ix(x, y)Iy(x, y) Iy(x, y)2

�

Flat patch:

M

M =


0 0
0 0

�

E(u, v) = 0 8u, v

M


u
v

�
=


0
0

�

Vertical edge:

M

M

E(0, v) = 0 8v

M


0
v

�
=


0
0

�

Horizontal edge:

MM

M

M


u
0

�
=


0
0

�

E(u, 0) = 0 8u

What about edges in arbitrary orientation?

E(u, v) ⇡
⇥
u v

⇤
M


u
v

�

M


u
v

�
=


0
0

�
, E(u, v) = 0

Solutions to Mx = 0 are directions for which E
is 0: window can slide in this direction
without changing appearance

E(u, v) ⇡
⇥
u v

⇤
M


u
v

�

Solutions to Mx = 0 are directions for which E
is 0: window can slide in this direction
without changing appearance

For corners, we want no such directions to
exist

u v

E(u,v)
E(u,v) E(u,v) E(u,v)

v v vu u u

Eigenvalues and eigenvectors of M

• !" = 0 ⇒ !" = &": x is an eigenvector of M with
eigenvalue 0
• M is 2 x 2, so it has 2 eigenvalues (&()*, &(,-) with

eigenvectors ("()*, "(,-)
• / "()* = "()*0 !"()* = &()*||"()*||2 = &()*

(eigenvectors have unit norm)
• / "(,- = "(,-0 !"(,- = &(,-||"(,-||2 = &(,-

Eigenvalues and eigenvectors of M

Eigenvalues and eigenvectors of M
• Define shift directions with the smallest and largest change in error
• xmax = direction of largest increase in E
• lmax = amount of increase in direction xmax

• xmin = direction of smallest increase in E
• lmin = amount of increase in direction xmin

xmin

xmax
M

M

E(u, v) ⇡
⇥
u v

⇤
M


u
v

�

!"#$ ≈ !"&' ≫ 0
E very high in all directions

Corner

!"#$ ≫ !"&', !"&' ≈ 0
E remains close to 0
along +"&'

Edge!"#$, !"&' are small;
E is almost 0 in all
directions Flat patch

!"&'

!"#$

Interpreting the eigenvalues

