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Grouping by clustering

• Idea: embed pixels into 
high-dimensional space 
(e.g. 3-dimensions)
• Each pixel is a point
• Group together points



K-means

• Assumption: each group is a Gaussian with different means and same 
standard deviation

• Suppose we know all !". Which group should a point #$ belong to?
• The j with highest % #$ !")
• = The j with smallest ||#$ − !"||)

P (xi|µj) / e�
1

2�2 kxi�µjk2



K-means
• Assumption: each group = a Gaussian with different 

means and same standard deviation
• If means are known, then trivial assignment to groups. 

How?
• Assign data point to nearest mean!



K-means

• Problem: means are not known
• What if we know a set of points from each cluster?
• belong to cluster k
• What should be !"?
xk1 , xk2 , . . . , xkn

µk =
(xk1 + xk2 + . . .+ xkn)

n



K-means

• Problem: means are not known
• If assignment of points to clusters is known, then finding means is 

easy
• How? Compute the mean of every cluster!



K-means

• Given means, can assign points to clusters
• Given assignments, can compute means
• Idea: iterate!



K-means

• Step-1 : randomly pick k centers



K-means

• Step 2: Assign each point to nearest center



K-means

• Step 3: re-estimate centers



K-means

• Step 4: Repeat



K-means

• Step 4: Repeat



K-means

• Step 4: Repeat



K-means

• Ground-truth vs k-means

Ground truth K-means 100 iterations



K-means - another example



K-means

Input: set of data points, k
1. Randomly pick k points as means
2. For i in [0, maxiters]:

1. Assign each point to nearest center
2. Re-estimate each center as mean of points assigned to it



K-means - the math

Input: set of data points !, k
1. Randomly pick k points as means "#, % = 1,… , )
2. For iteration in [0, maxiters]:

1. Assign each point to nearest center

2. Re-estimate each center as mean of points assigned to it

yi = argmin
j

kxi � µjk2

µj =

P
i:yi=j xiP
i:yi=j 1



K-means - the math

• An objective function that must be minimized:

• Every iteration of k-means takes a downward step:
• Fixes ! and sets " to minimize objective
• Fixes " and sets ! to minimize objective

min
µ,y

X

i

kxi � µyik2



K-means on image pixels
Iteration 1 Iteration 5

Final: Iteration 17



K-means on image pixels

Picture courtesy David 
Forsyth

One of the clusters from k-
means



K-means on image pixels

• What is wrong?
• Pixel position
• Nearby pixels are likely to 

belong to the same object
• Far-away pixels are likely to 

belong to different objects
• How do we incorporate pixel 

position?
• Instead of representing each 

pixel as (r,g,b)
• Represent each pixel as 

(r,g,b,x,y)



K-means on image pixels+position



The issues with k-means

• Captures pixel similarity but
• Doesn’t capture continuity of contours
• Captures near/far relationships only weakly
• Can merge far away objects together

• Requires knowledge of k!
• Can it deal with texture?



Oversegmentation and superpixels

• We don’t know k. What is a safe 
choice?
• Idea: Use large k
• Can potentially break big objects, but 

will hopefully not merge unrelated 
objects
• Later processing can decide which 

groups to merge
• Called superpixels


