
Grouping

Regions Boundaries

Grouping by clustering

R

G

B

Grouping by clustering

• Idea: embed pixels into
high-dimensional space
(e.g. 3-dimensions)
• Each pixel is a point
• Group together points

K-means

• Assumption: each group is a Gaussian with different means and same
standard deviation

• Suppose we know all !". Which group should a point #$ belong to?
• The j with highest % #$!")
• = The j with smallest ||#$ − !"||)

P (xi|µj) / e�
1

2�2 kxi�µjk2

K-means
• Assumption: each group = a Gaussian with different

means and same standard deviation
• If means are known, then trivial assignment to groups.

How?
• Assign data point to nearest mean!

K-means

• Problem: means are not known
• What if we know a set of points from each cluster?
• belong to cluster k
• What should be !"?
xk1 , xk2 , . . . , xkn

µk =
(xk1 + xk2 + . . .+ xkn)

n

K-means

• Problem: means are not known
• If assignment of points to clusters is known, then finding means is

easy
• How? Compute the mean of every cluster!

K-means

• Given means, can assign points to clusters
• Given assignments, can compute means
• Idea: iterate!

K-means

• Step-1 : randomly pick k centers

K-means

• Step 2: Assign each point to nearest center

K-means

• Step 3: re-estimate centers

K-means

• Step 4: Repeat

K-means

• Step 4: Repeat

K-means

• Step 4: Repeat

K-means

• Ground-truth vs k-means

Ground truth K-means 100 iterations

K-means - another example

K-means

Input: set of data points, k
1. Randomly pick k points as means
2. For i in [0, maxiters]:

1. Assign each point to nearest center
2. Re-estimate each center as mean of points assigned to it

K-means - the math

Input: set of data points !, k
1. Randomly pick k points as means "#, % = 1,… ,)
2. For iteration in [0, maxiters]:

1. Assign each point to nearest center

2. Re-estimate each center as mean of points assigned to it

yi = argmin
j

kxi � µjk2

µj =

P
i:yi=j xiP
i:yi=j 1

K-means - the math

• An objective function that must be minimized:

• Every iteration of k-means takes a downward step:
• Fixes ! and sets " to minimize objective
• Fixes " and sets ! to minimize objective

min
µ,y

X

i

kxi � µyik2

K-means on image pixels
Iteration 1 Iteration 5

Final: Iteration 17

K-means on image pixels

Picture courtesy David
Forsyth

One of the clusters from k-
means

K-means on image pixels

• What is wrong?
• Pixel position
• Nearby pixels are likely to

belong to the same object
• Far-away pixels are likely to

belong to different objects
• How do we incorporate pixel

position?
• Instead of representing each

pixel as (r,g,b)
• Represent each pixel as

(r,g,b,x,y)

K-means on image pixels+position

The issues with k-means

• Captures pixel similarity but
• Doesn’t capture continuity of contours
• Captures near/far relationships only weakly
• Can merge far away objects together

• Requires knowledge of k!
• Can it deal with texture?

Oversegmentation and superpixels

• We don’t know k. What is a safe
choice?
• Idea: Use large k
• Can potentially break big objects, but

will hopefully not merge unrelated
objects
• Later processing can decide which

groups to merge
• Called superpixels

