
Resizing and resampling

Aliasing

• Images are made up of high frequency and low frequency
components
• High frequency components: pixel-to-pixel details
• Low frequency components: high-level structure
• What subsampling should do: remove pixel-to-pixel details, keep

high-level structure
• What naïve subsampling does: converts pixel-to-pixel details to new

coarse structures à problem

Aliasing

Aliasing

Aliasing
artifacts

Image sub-sampling

1/4 (2x zoom) 1/16 (4x zoom)

Why does this look so crufty? Aliasing!

1/2

Source: S. Seitz

How to avoid aliasing

• To recover a sinusoid, need to sample at least twice per cycle
• For a general image, need to sample at least twice the rate of the

highest frequency component
• Nyquist sampling theorem: 2"#$% < "'$#()*
• To subsample, remove high frequency components
• To remove high frequency components, blur the image with a

Gaussian

Image Fourier
spectrum

Gaussian filters Fourier transform

Zeros out
high

frequencies

Keeps low
frequencies

Gaussian
pre-filtering

• Solution: filter
the image, then
subsample

blur

F0 H*

subsample blur subsample …
F1

F1 H*

F2F0

blur

F0 H*

subsample blur subsample …
F1

F1 H*

F2F0
{Gaussian

pyramid

Gaussian pyramids
[Burt and Adelson, 1983]

• In computer graphics, a mip map [Williams, 1983]

Gaussian Pyramids have all sorts of applications in computer vision

Source: S. Seitz

Gaussian pyramids - Searching over scales

Gaussian pyramids - Searching over scales

2)*(23 ¯= gaussianGG

1G

The Gaussian Pyramid

High resolution

Low resolution

Image=0G

2)*(01 ¯= gaussianGG

2)*(12 ¯= gaussianGG

2)*(34 ¯= gaussianGG

blur

blur

blur

sub-sample

sub-sample

sub-sampleblur
sub-sample

Gaussian pyramid and stack

Source: Forsyth

Memory Usage
• Each color is a separate pyramid
• 3 pyramids fit into 2W x 2H image

1
5

What about upsampling?

• Simple solution: Fill rest of the pixels with zeros
• Obviously wrong. How can we do better?

Upsampling

• Need to interpolate intermediate pixels. What is the best way to
interpolate?
• Find the most likely high-res image

• Recall: before subsampling, we removed high frequencies
• Key idea: upsampled image should not have high frequencies either
• Gaussian blur again!

Upsampling

• Step 1: upsample and fill with 0s
• Step 2: Gaussian blur to interpolate
• Step 3: Scale correction
• Gaussian blur is just weighted average
• But we just introduced a bunch of zeros ==> need to scale up the resulting

image

Upsampling: Step 1

Upsampling: Step 2 + 3

Laplacian pyramid

Re-
duce

Expand (upsample + blur)
=Expand (upsample + blur)

-
Expand (upsample + blur)

Expand (upsample + blur)

-

-

=

=

=-

Laplacian pyramid

L3 = G3 - expand(G4) =
L2 = G2 - expand(G3) =

L1 = G1 - expand(G2) =

L0 = G0 - expand(G1) =

L4 = G4 =

Reconstructing the image from a
Laplacian pyramid

Expand (upsample + blur)

=
Expand (upsample + blur)+

Expand (upsample + blur)

Expand (upsample + blur)

+

+

=

=

=+

Laplacian pyramid

Source: Forsyth

Interpolation in general

• A more general question
• Given some known pixels in the image (shown in blue) how can we

get the value of other pixels (shown in red)
• In our case, known pixels are in every other row/column

Interpolation in general

• Gaussian interpolation: set new pixels to be weighted combination of
known pixels

• Other forms of interpolation: other weights

Interpolation in general

• Nearest neighbor interpolation
• Find the nearest known pixel
• Copy its value

Nearest-neighnbor interpolation

!

"#

$

Bilinear interpolation

• Find the four nearest neighbors
• %&, (& , %&, () , %), () , %), (&

• Compute weighted average of the four

(&
(

()
%& % %)

Bilinear interpolation

Geometric transformations

• Geometric transformations involve changes to pixel coordinates
instead of pixel values
• For example, resizing
• Reducing size: !, # ⟼ %

& ,
'
&

• Increasing size: !, # ⟼ 2!, 2#
• In general: !, # ⟼) !, #
• How can we do this?

Geometric transformations

• !, # ⟼ % !, #
• Simplest solution: copy over pixel values to the new location
• & % !, # = (!, #
• Problem?
• Only integer coordinates in f
• So, not every pixel in g will be produced
• Holes!

Geometric transformations

• !, # ⟼ % !, #
• Better solution: find %&'
• For every pixel of output g, set:
• (!, # = * %&' !, #
• Problem: %&' !, # may not be integers
• Solution: interpolate!

