Resizing and resampling

Aliasing

* Images are made up of high frequency and low frequency
components

* High frequency components: pixel-to-pixel details
* Low frequency components: high-level structure

* What subsampling should do: remove pixel-to-pixel details, keep
high-level structure

* What naive subsampling does: converts pixel-to-pixel details to new
coarse structures = problem

Aliasing

Image sub-sampling

o
' A

| 1/2 | 1/4 (2x zoom) 1/16 (4x zoom)

Why does this look so crufty? Aliasing!

Source: S. Seitz

How to avoid aliasing

* To recover a sinusoid, need to sample at least twice per cycle

* For a general image, need to sample at least twice the rate of the
highest frequency component

* Nyquist sampling theorem: 2v,,,, < Vgumpie
* To subsample, remove high frequency components

* To remove high frequency components, blur the image with a
Gaussian

Fourier
spectrum

lmage

Zeros out
high
frequencies

Keeps low
frequencies

Gaussian filters Fourier transform

Gaussian
pre-filtering

e Solution: filter
the image, then
subsample

Gaussian
pyramid

b|l& subsa/rr\ple bll& subsa/ni

p|e ee e

b
)

Gaussian pyramids
[Burt and Adelson, 1983]

Idea: Represent NxN image as a “pyramid” of
1x1, 2x2, 4x4,..., 2*x2X images (assuming N=2¥)

level k (= 1 pixle\

A
]Lw.lkl/ / V
J L L NS S
N S A G
vy Z s SN S
S S L L

level 0 (= original image)

e In computer graphics, a mip map [Williams, 1983]

Gaussian Pyramids have all sorts of applications in computer vision

Source: S. Seitz

Gaussian pyramids - Searching over scales

Gaussian pyramids - Searching over scales

The Gaussian Pyramid
e G, =(G* ga_ussian) %)

_ * E@:ﬁw.
) SUb-Sam
- ,,.NL._\%.

‘ N
=(G, " gaussian) ¥ 2

Low resolution

G, =Image

High resolution

Gaussian pyramid and stack

W
3 N A

) \)/
p
\
’ 7
v \

A
2

, _ . , .
512 256 128 64 32 16 8

A L
/ \

: N
-).“
_ RE
iﬁ;«

\

/S

;\\

i~

¢

Source: Forsyth

Memory Usage
* Each color is a separate pyramid

* 3 pyramids fit into 2W x 2H image

What about upsampling?

e Simple solution: Fill rest of the pixels with zeros
* Obviously wrong. How can we do bettg

Upsampling

* Need to interpolate intermediate pixels. What is the best way to
interpolate?

* Find the most likely high-res image
* Recall: before subsampling, we removed high frequencies
* Key idea: upsampled image should not have high frequencies either

* Gaussian blur again!

Upsampling

 Step 1: upsample and fill with Os
e Step 2: Gaussian blur to interpolate

 Step 3: Scale correction
e Gaussian blur is just weighted average

* But we just introduced a bunch of zeros ==> need to scale up the resulting
image

Upsampling: Step 1

—)

Upsampling: Step 2 + 3

Laplacian pyramid

Xpand (upsample + blur)

Laplacian pyramid

L,=G, =
L, =G, - expand(G,) = B
L, =G, - expand(G;) = 2

L, =G, - expand(G,) = .

L, = G, - expand(G,) =

Reconstructing t

_apIaC|an pyrami

ne image from a

512 256 128 64 32 16 8

Source: Forsyth

Interpolation in general

* A more general question

* Given some known pixels in the image (shown in blue) how can we
get the value of other pixels (shown in red)

* [n our case, known pixels are in every other row/column

Interpolation in general

e Gaussian interpolation: set new pixels to be weighted combination of
known pixels

C> >1 _ (z—z)? -l-(y y') f(x,’y,)

e Other forms of mterpolatlon other weights

> >‘ w(z, o', y,y) f(z,y)

Interpolation in general

g(z,y) = > > w(xz, 2,y y)f(,y)

* Nearest neighbor interpolation
* Find the nearest known pixel
e Copy its value

g(z,y) = f(z*,y")

Nearest-neighnbor interpolation

Bilinear interpolation

g(z,y) =Y > w(z,z,y,y)f(=',y)
w/ y/
Vi~

* Find the four nearest neighbors
* ey, O yn), (n, yn), (e 1) Y -
* Compute weighted average of the four

g(z,y) =Cf(z1, y1)
+ Bf(xh, y1)
+ Af(zh, yn) Yh -@
+ D f (1, yn)

Bilinear interpolation

Y

Geometric transformations

* Geometric transformations involve changes to pixel coordinates
instead of pixel values

* For example, resizing

. . X
* Reducing size: x,y '_)E’%

* Increasing size: x,y + 2x,2y
* Ingeneral: x,y — T(x,y)

e How can we do this?

Geometric transformations

*x,y — T(xy)
e Simplest solution: copy over pixel values to the new location

- 9(T(x,) = f(x,y)

* Problem?
* Only integer coordinates in f
* So, not every pixel in g will be produced
* Holes!

Geometric transformations

*x,y —T(xy)

* Better solution: find T~1

* For every pixel of output g, set:
+g(x,y) = f(T7 (%))

* Problem: T~1(x, y) may not be integers
* Solution: interpolate!

