Resizing and resampling

Aliasing

- Images are made up of high frequency and low frequency components
- High frequency components: pixel-to-pixel details
- Low frequency components: high-level structure
- What subsampling should do: remove pixel-to-pixel details, keep high-level structure
- What naïve subsampling does: converts pixel-to-pixel details to new coarse structures \rightarrow problem

Image sub-sampling

Why does this look so crufty? Aliasing!

How to avoid aliasing

- To recover a sinusoid, need to sample at least twice per cycle
- For a general image, need to sample at least twice the rate of the highest frequency component
- Nyquist sampling theorem: $2 v_{\max }<v_{\text {sample }}$
- To subsample, remove high frequency components
- To remove high frequency components, blur the image with a Gaussian

Image

Fourier

 spectrum

Gaussian pre-filtering

- Solution: filter the image, then subsample

Gaussian pyramids [Burt and Adelson, 1983]

Idea: Represent NxN image as a "pyramid" of
 $1 \times 1,2 \times 2,4 \times 4, \ldots, 2^{k} \times 2^{k}$ images (assuming $N=2^{k}$)

level 0 (= original image)

- In computer graphics, a mip map [Williams, 1983]

Gaussian Pyramids have all sorts of applications in computer vision

Gaussian pyramids - Searching over scales

Gaussian pyramids - Searching over scales

The Gaussian Pyramid

Gaussian pyramid and stack

Memory Usage

- Each color is a separate pyramid
- 3 pyramids fit into $2 \mathrm{~W} \times 2 \mathrm{H}$ image

What about upsampling?

- Simple solution: Fill rest of the pixels with zeros
- Obviously wrong. How can we do better?

Upsampling

- Need to interpolate intermediate pixels. What is the best way to interpolate?
- Find the most likely high-res image
- Recall: before subsampling, we removed high frequencies
- Key idea: upsampled image should not have high frequencies either
- Gaussian blur again!

Upsampling

- Step 1: upsample and fill with 0s
- Step 2: Gaussian blur to interpolate
- Step 3: Scale correction
- Gaussian blur is just weighted average
- But we just introduced a bunch of zeros ==> need to scale up the resulting image

Upsampling: Step 1

Upsampling: Step $2+3$

Laplacian pyramid

Laplacian pyramid

$$
\begin{array}{r}
L_{4}=G_{4}= \\
L_{3}=G_{3}-\operatorname{expand}\left(G_{4}\right)= \\
L_{2}=G_{2}-\operatorname{expand}\left(G_{3}\right)= \\
L_{1}=G_{1}-\operatorname{expand}\left(G_{2}\right)= \\
L_{0}=G_{0}-\operatorname{expand}\left(G_{1}\right)=
\end{array}
$$

Reconstructing the image from a Laplacian pyramid

Laplacian pyramid

Interpolation in general

- A more general question
- Given some known pixels in the image (shown in blue) how can we get the value of other pixels (shown in red)
- In our case, known pixels are in every other row/column

Interpolation in general

- Gaussian interpolation: set new pixels to be weighted combination of known pixels

$$
g(x, y)=C \sum_{x^{\prime}} \sum_{y^{\prime}} e^{-\frac{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}}{2 \sigma^{2}}} f\left(x^{\prime}, y^{\prime}\right)
$$

- Other forms of interpolation: other weights

$$
g(x, y)=\sum_{x^{\prime}} \sum_{y^{\prime}} w\left(x, x^{\prime}, y, y^{\prime}\right) f\left(x^{\prime}, y^{\prime}\right)
$$

Interpolation in general

$$
g(x, y)=\sum_{x^{\prime}} \sum_{y^{\prime}} w\left(x, x^{\prime}, y, y^{\prime}\right) f\left(x^{\prime}, y^{\prime}\right)
$$

- Nearest neighbor interpolation
- Find the nearest known pixel
- Copy its value

$$
g(x, y)=f\left(x^{*}, y^{*}\right)
$$

Nearest-neighnbor interpolation

Bilinear interpolation

$$
g(x, y)=\sum_{x^{\prime}} \sum_{y^{\prime}} w\left(x, x^{\prime}, y, y^{\prime}\right) f\left(x^{\prime}, y^{\prime}\right)
$$

- Find the four nearest neighbors
- $\left(x_{l}, y_{l}\right),\left(x_{l}, y_{h}\right),\left(x_{h}, y_{h}\right),\left(x_{h}, y_{l}\right)$
- Compute weighted average of the four

$$
\begin{aligned}
g(x, y)= & C f\left(x_{l}, y_{l}\right) \\
& +B f\left(x_{h}, y_{l}\right) \\
& +A f\left(x_{h}, y_{h}\right) \\
& +D f\left(x_{l}, y_{h}\right)
\end{aligned}
$$

Bilinear interpolation

Geometric transformations

- Geometric transformations involve changes to pixel coordinates instead of pixel values
- For example, resizing
- Reducing size: $x, y \mapsto \frac{x}{2}, \frac{y}{2}$
- Increasing size: $x, y \mapsto 2 x, 2 y$
- In general: $x, y \mapsto T(x, y)$
- How can we do this?

Geometric transformations

- $x, y \mapsto T(x, y)$
- Simplest solution: copy over pixel values to the new location
- $g(T(x, y))=f(x, y)$
- Problem?
- Only integer coordinates in f
- So, not every pixel in g will be produced
- Holes!

Geometric transformations

- $x, y \mapsto T(x, y)$
- Better solution: find T^{-1}
- For every pixel of output g, set:
- $g(x, y)=f\left(T^{-1}(x, y)\right)$
- Problem: $T^{-1}(x, y)$ may not be integers
- Solution: interpolate!

