Fourier Transforms

Fourier transform for 1D images

- A 1D image with N pixels is a vector of size N
- Every basis has N pixels
- There must be N basis elements
- n-th element of k-th basis in standard basis
- $E_{k}(n)=\left\{\begin{array}{l}1 \text { if } k=n \\ 0 \text { otherwise }\end{array}\right.$
- n -th element of k -th basis in Fourier basis
- $B_{k}(n)=e^{\frac{i 2 \pi k n}{N}}$

A nuance

- $B_{k}(n)=e^{\frac{i 2 \pi k n}{N}}$
- We previously said as k increases, frequency increases
- i.e., more cycles within N
- $B_{N-k}(\mathrm{n})=e^{\frac{i 2 \pi(N-k) n}{N}}=e^{i 2 \pi n-\frac{i 2 \pi k n}{N}}=e^{-\frac{i 2 \pi k n}{N}}=\overline{B_{k}(n)}$ (complex conjugate)
- Frequency increases till $N / 2$, subsequent basis elements are complex conjugates of previous elements

The full Fourier basis ($\mathrm{N}=10$)

The full Fourier basis ($\mathrm{N}=10$)

Frequency
,

Imaginary

A nuance

- $B_{k}(n)=e^{\frac{i 2 \pi k n}{N}}$
- We previously said as k increases, frequency increases
- i.e., more cycles within N
- $B_{N-k}(\mathrm{n})=e^{\frac{i 2 \pi(N-k) n}{N}}=e^{i 2 \pi n-\frac{i 2 \pi k n}{N}}=e^{-\frac{i 2 \pi k n}{N}}=\overline{B_{k}(n)}=B_{-k}(n)$
- Instead of considering B_{0} to B_{N-1} as basis, often consider $B_{-\frac{N}{2}}$ to $B_{\frac{N}{2}-1}$ as the basis
- For odd N, use $B_{-(N-1) / 2}$ to $B_{(N-1) / 2}$

The full Fourier basis ($\mathrm{N}=10$)

Fourier transform for 1D images

- Fourier transform converts from standard basis to Fourier basis
- If \boldsymbol{x} is image in standard basis, and \boldsymbol{X} is representation in Fourier basis, then:
- $X(k)=\sum_{n} x(n) e^{-\frac{i 2 \pi k n}{N}}$
- Or $\boldsymbol{X}=\boldsymbol{B}^{*} \boldsymbol{x}$ where \boldsymbol{B}^{*} is a matrix with entries $B^{*}(k, n)=e^{-\frac{i 2 \pi k n}{N}}$

Inverse Fourier transform

- Given Fourier transform of image how should we get back image?
- In other words how should we change the basis back to the original coordinates?
- $\boldsymbol{x}=\sum_{k} X(k) \boldsymbol{B}_{k}$
- $x(n)=\sum_{k} X(k) B_{k}(n)=\sum_{k} X(k) e^{\frac{i 2 \pi k n}{N}}$

Real images in the Fourier basis

- Basis is complex but images are real
- Combine a pair of conjugate basis elements
- Coefficients for B_{k} and B_{-k} will be the same
- $X(k)=X(-k)$
- So only need to know first $\frac{N}{2}$ Fourier coefficients!

The 0-th basis

- $B_{k}(n)=e^{\frac{i 2 \pi k n}{N}}$
- $B_{0}(n)=e^{\frac{i 2 \pi 0 n}{N}}=1$
- The zero-th basis element is a constant image
- Every other basis element varies between 1 and -1 , so averages out to 0
- Thus, any image with a non-zero average intensity must have a high zero-th coefficient

Fourier transform for 2D images

- Images are 2D arrays
- Fourier basis for 1D array indexed by frequencies
- Fourier basis for 2D arrays are indexed by 2 spatial frequencies
- (i,j)th Fourier basis for $N \times N$ image
- Has period N / i along x
- Has period N / j along y
- $B_{k, l}(x, y)=e^{\frac{2 \pi i k x}{N}+\frac{2 \pi i l y}{N}}$

$$
=\cos \left(\frac{2 \pi k x}{N}+\frac{2 \pi l y}{N}\right)+i \sin \left(\frac{2 \pi k x}{N}+\frac{2 \pi l y}{N}\right)
$$

Visualizing the Fourier basis for images $B_{1,1}$

Visualizing the Fourier transform

- Fourier coefficients are complex
- Instead of visualizing complex numbers we look at the squared absolute value $|X(k, l)|^{2}$
- This is called the power spectrum
- There are $N \times N$ Fourier coefficients, so we can show this as an $N \times N$ image.
- Because of complex conjugates only the first $\frac{N}{2} \times \frac{N}{2}$ coefficients are unique
- Because of very high values display using log

Visualizing the Fourier transform

Visualizing the Fourier transform

Visualizing the Fourier transform

- High peak for $B_{0,0}$. Why?
- High values on the X axis and low values on the Y axis. Why?

Why Fourier transforms?

- Think of image in terms of low and high frequency information
- Low frequency: large scale structure, no details
- High frequency: fine structure

Why Fourier transforms?

What if we zero out all high y-frequency components?

What if we zero out all high frequencies?

Removing high frequency components looks like Gaussian / mean filtering. Is there more to this relationship?

Dual domains

- Image: Spatial domain
- Fourier Transform: Frequency domain
- Amplitudes are called spectrum
- For any transformations we do in spatial domain, there are corresponding transformations we can do in the frequency domain
- And vice-versa

Dual domains

- Convolution in spatial domain = Point-wise multiplication in frequency domain
- Suppose $h=f * g$
- Suppose H is the Fourier transform of h, similarly F and G
- Then $H(k, l)=F(k, l) G(k, l)$
- Convolution in frequency domain = Point-wise multiplication in spatial domain
- To understand action of a filter, look at its Fourier transform

Filter
Fourier transform (Power spectrum)

Filter
Fourier transform (Power spectrum)

Gaussian filtering

- Fourier transform of a Gaussian is another Gaussian!
- So convolving with a Gaussian in spatial domain = multiplying with Gaussian in frequency domain
- High frequencies get zeroed out
- Higher the standard deviation in spatial domain = lower the std in frequency domain
- More frequencies get zeroed out.

