Image Classification

Convolutional networks - Why

- Convolutions
 - Reduce parameters
 - Capture shift-invariance: location of patch in image should not matter
- Subsampling
 - Allows greater invariance to deformations
 - Allows the capture of large patterns with small filters

How to do machine learning

- Create training / validation sets
- Identify loss functions
- Choose hypothesis class
- Find best hypothesis by minimizing training loss

How to do machine learning

- Create training / validation sets
- Identify loss functions
- Choose hypothesis class
- Find best hypothesis by minimizing training loss

 $h(x) = \mathbf{s} \qquad \hat{p}(y = k | x) \propto e^{s_k} \quad \hat{p}(y = k | x) = \frac{e^{s_k}}{\sum_j e^{s_j}}$

$$L(h(x), y) = -\log \hat{p}(y|x)$$

Negative log likelihood for multiclass classification

Multiclass

classification

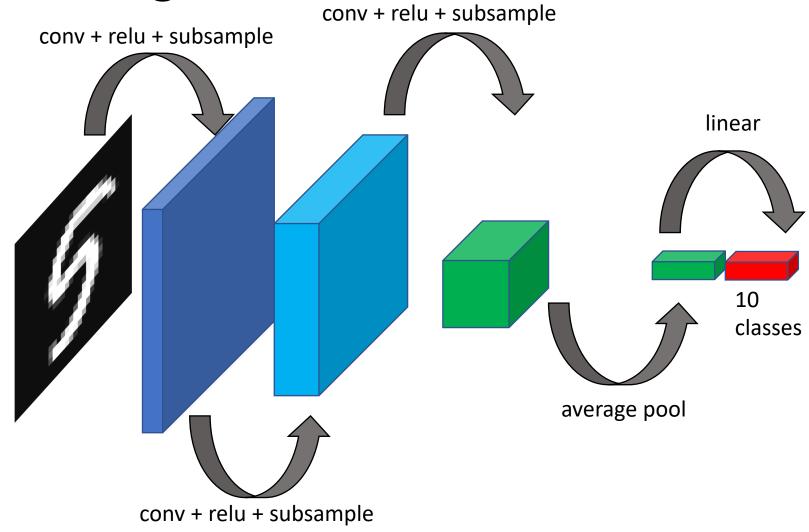
Negative log likelihood for multiclass classification

$$L(h(x), y) = -\log \hat{p}(y|x)$$

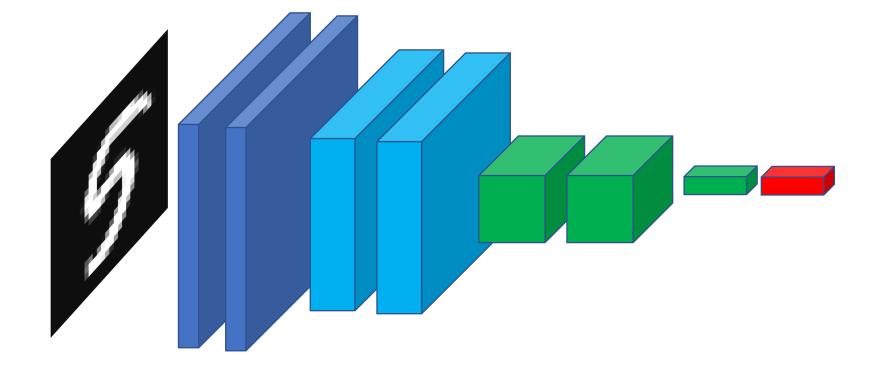
- Often represent label as a ``one-hot'' vector y
 - **y** = [0, 0, ..., 1,... 0]
 - y_k = 1 if label is k, 0 otherwise

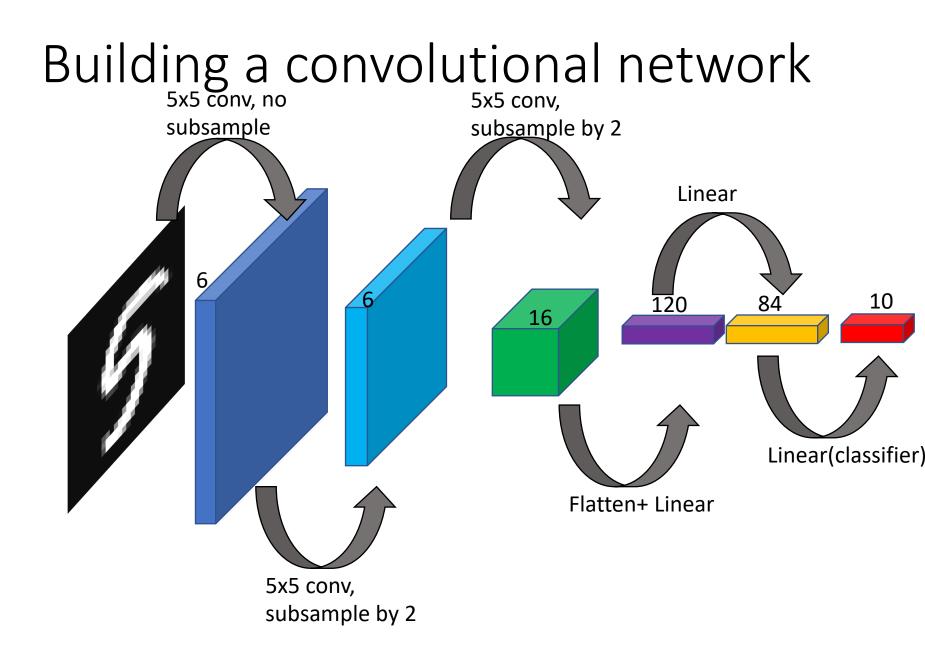
$$L(h(x), \mathbf{y}) = -\sum_{k} y_k \log \hat{p}(y = k | x)$$

Building a convolutional network

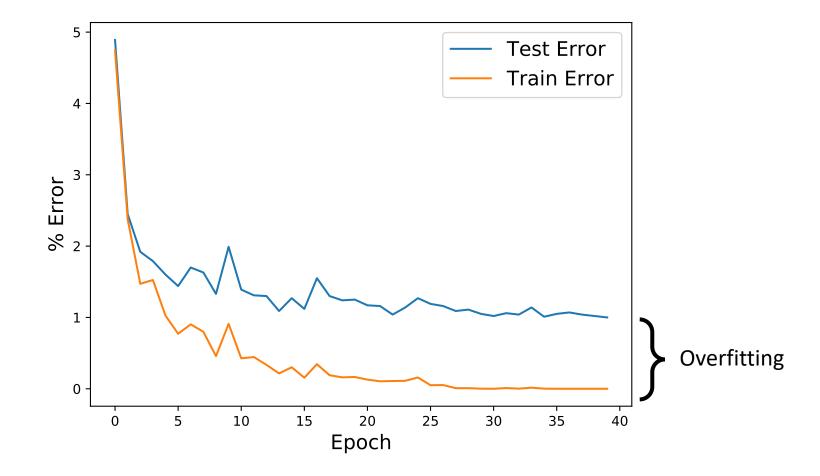


Building a convolutional network





Training the network



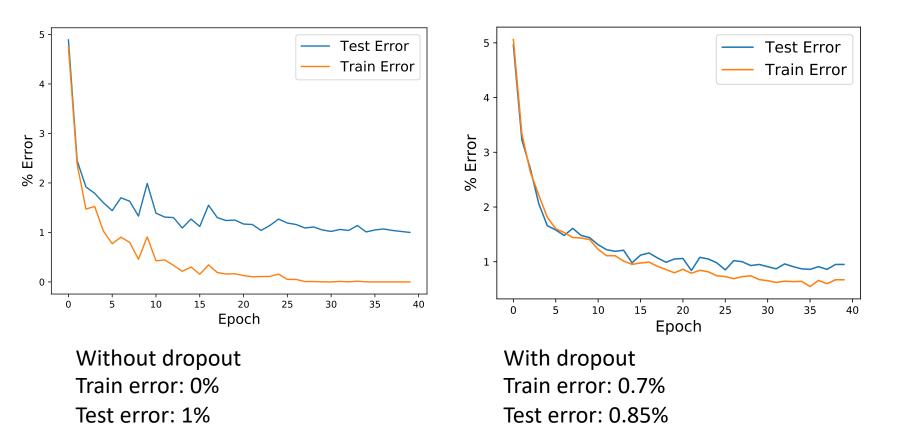
Controlling overfitting in convolutional networks

- Reduce parameters?
- Increase dataset size?
 - Automatically by jittering examples "Data augmentation"

Controlling overfitting in convolutional networks

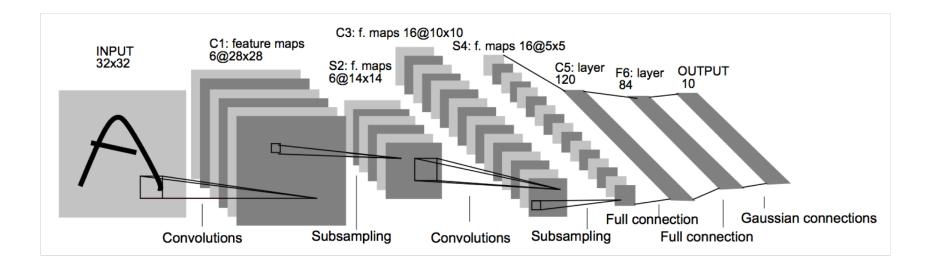
- Dropout: Internally create data augmentations
 - Randomly zero out some fraction of values before a layer
 - Can be thought of as per-layer data augmentation
 - Typically applied on inputs to linear layers (since linear layers have tons of parameters)

Dropout



MNIST Classification

Method	Error rate (%)
Linear classifier over pixels	12
Non-linear classifier over pixels	1.41
Linear classifier over HOG	1.44
Kernel SVM over HOG	0.79
Convolutional Network	0.95



ImageNet

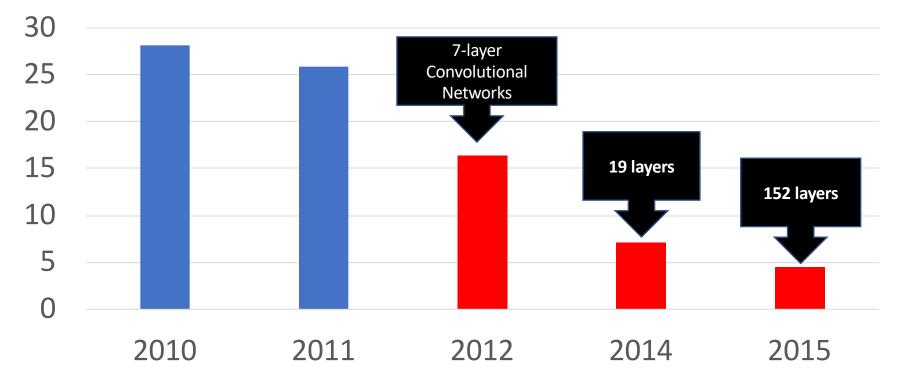
- 1000 categories
- ~1000 instances per category

Olga Russakovsky^{*}, Jia Deng^{*}, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei. (* = equal contribution) **ImageNet Large Scale Visual Recognition Challenge**. *International Journal of Computer Vision*, 2015.

ImageNet

- Top-5 error: algorithm makes 5 predictions, true label must be in top 5
- Useful for incomplete labelings

Challenge winner's accuracy



Exploring convnet architectures

Deeper is better

7 layers layers \mathbf{O}

Challenge winner's accuracy

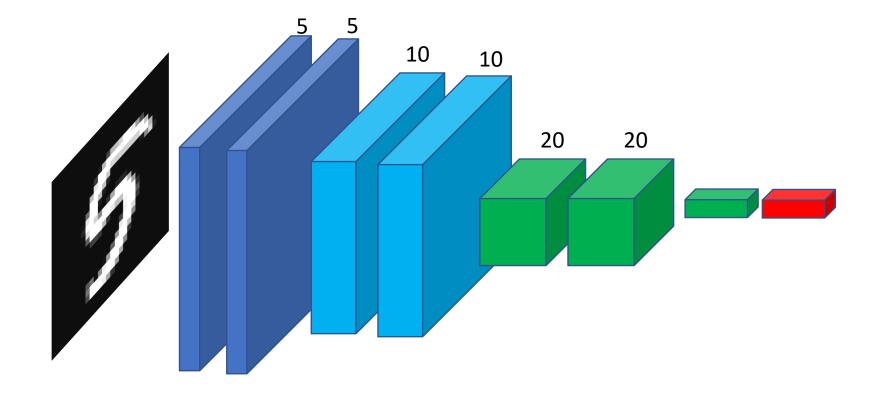
Deeper is better

Challenge winner's accuracy Alexnet VGG16 \mathbf{O}

The VGG pattern

- Every convolution is 3x3, padded by 1
- Every convolution followed by ReLU
- ConvNet is divided into "stages"
 - Layers within a stage: no subsampling
 - Subsampling by 2 at the end of each stage
- Layers within stage have same number of channels
- Every subsampling → double the number of channels

Example network



Challenges in training: exploding / vanishing gradients

• Vanishing / exploding gradients

$$\frac{\partial z}{\partial z_i} = \frac{\partial z}{\partial z_{n-1}} \frac{\partial z_{n-1}}{\partial z_{n-2}} \dots \frac{\partial z_{i+1}}{\partial z_i}$$

- If each term is (much) greater than 1 → explosion of gradients
- If each term is (much) less than 1 \rightarrow vanishing gradients

Residual connections

- In general, gradients tend to vanish
- Key idea: allow gradients to flow unimpeded

$$z_{i+1} = f_{i+1}(z_i, w_{i+1}) \qquad \qquad \frac{\partial z_{i+1}}{\partial z_i} = \frac{\partial f_{i+1}(z_i, w_{i+1})}{\partial z_i}$$

$$\frac{\partial z}{\partial z_i} = \frac{\partial z}{\partial z_{n-1}} \frac{\partial z_{n-1}}{\partial z_{n-2}} \dots \frac{\partial z_{i+1}}{\partial z_i}$$

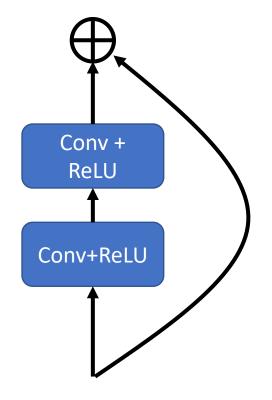
Residual connections

- In general, gradients tend to vanish
- Key idea: allow gradients to flow unimpeded

$$z_{i+1} = g_{i+1}(z_i, w_{i+1}) + z_i$$
 $\frac{\partial z_{i+1}}{\partial z_i} = \frac{\partial g_{i+1}(z_i, w_{i+1})}{\partial z_i} + I$

$$\frac{\partial z}{\partial z_i} = \frac{\partial z}{\partial z_{n-1}} \frac{\partial z_{n-1}}{\partial z_{n-2}} \dots \frac{\partial z_{i+1}}{\partial z_i}$$

Residual block



Residual connections

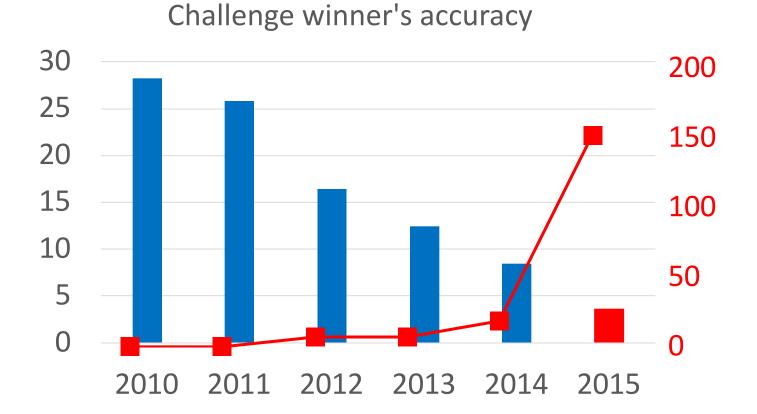
- Assumes all z_i have the same size
- True within a stage
- Across stages?
 - Doubling of feature channels
 - Subsampling
- Increase channels by 1x1 convolution
- Decrease spatial resolution by subsampling

 $z_{i+1} = g_{i+1}(z_i, w_{i+1}) + \text{subsample}(Wz_i)$

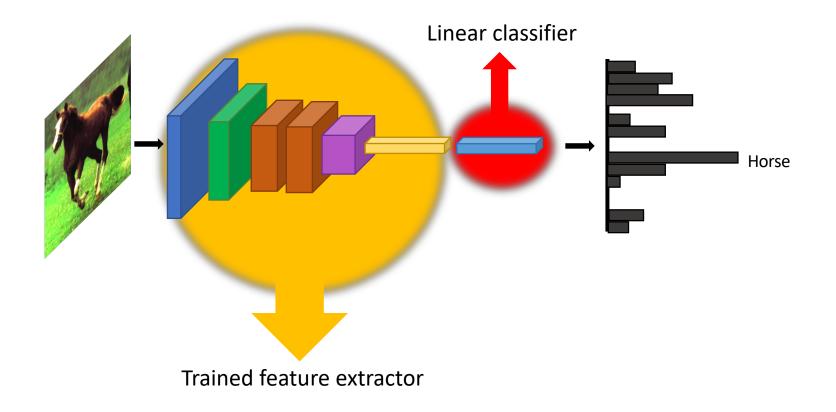
The ResNet pattern

- Decrease resolution substantially in first layer
 - Reduces memory consumption due to intermediate outputs
- Divide into stages
 - maintain resolution, channels in each stage
 - halve resolution, double channels between stages
- Divide each stage into residual blocks
- At the end, compute average value of each channel to feed linear classifier

Putting it all together - Residual networks

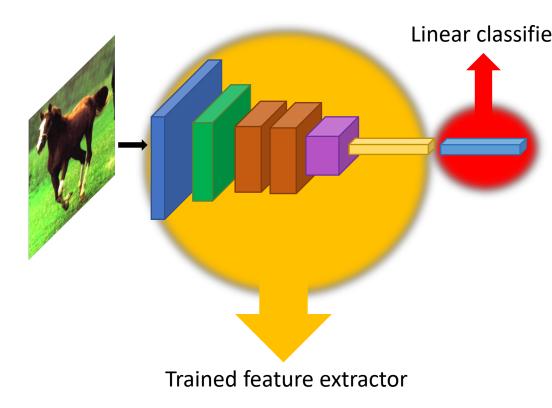


Transfer learning with convolutional networks



Transfer learning with convolutional networks

- What do we do for a new image classification problem?
- Key idea:
 - *Freeze* parameters in feature extractor
 - Retrain classifier



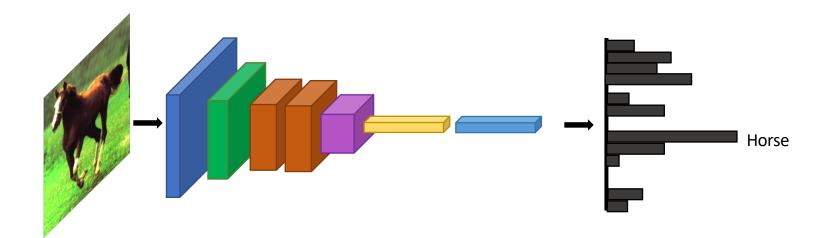
Transfer learning with convolutional networks

Dataset	Best Non- Convnet perf	Pretrained convnet + classifier	Improvement
Caltech 101	84.3	87.7	+3.4
VOC 2007	61.7	79.7	+18
CUB 200	18.8	61.0	+42.2
Aircraft	61.0	45.0	-16
Cars	59.2	36.5	-22.7

Why transfer learning?

- Availability of training data
- Computational cost
- Ability to pre-compute feature vectors and use for multiple tasks
- Con: NO end-to-end learning

Finetuning



Finetuning

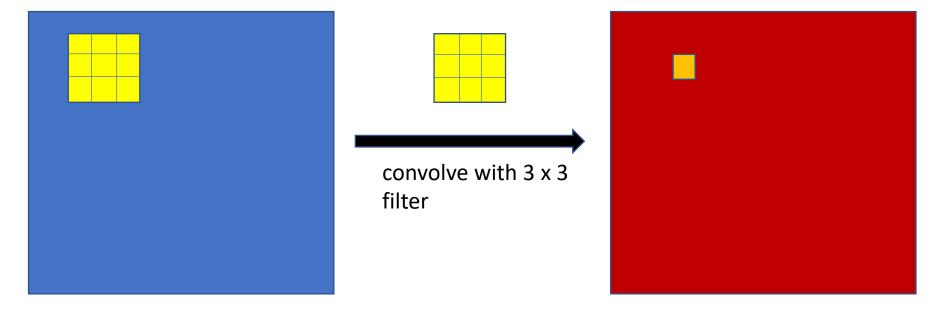
Initialize with pretrained, then train with low learning rate Bakery

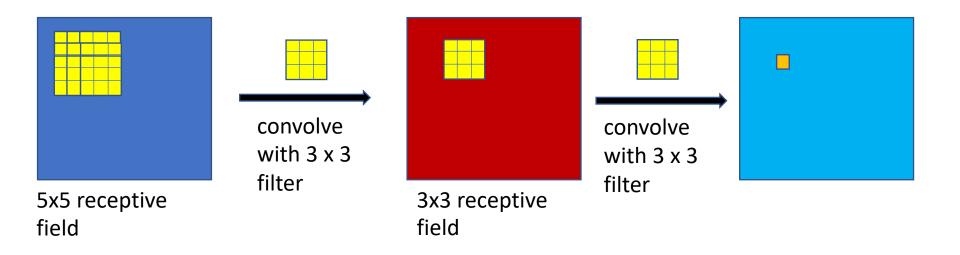
Finetuning

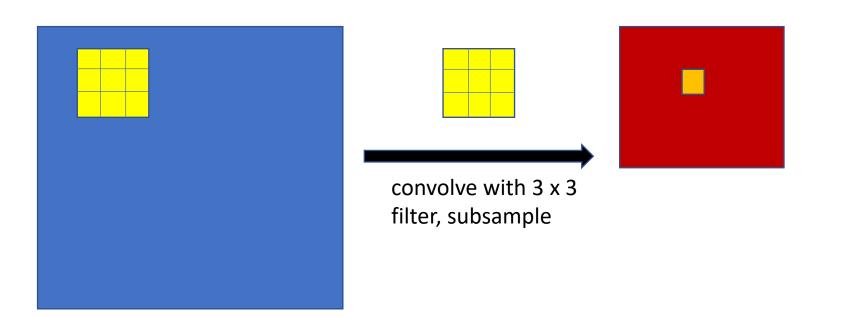
Dataset	Best Non- Convnet perf	Pretrained convnet + classifier	Finetuned convnet	Improvem ent
Caltech 101	84.3	87.7	88.4	+4.1
VOC 2007	61.7	79.7	82.4	+20.7
CUB 200	18.8	61.0	70.4	+51.6
Aircraft	61.0	45.0	74.1	+13.1
Cars	59.2	36.5	79.8	+20.6

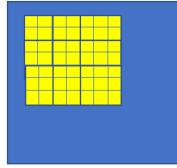
Visualizing convolutional networks

• Which input pixels does a particular unit in a feature map depends on









7x7 receptive field: union of 9 3x3 fields with stride of 2

convolve with 3 x 3		convolve with 3 x 3	
filter, subsample by factor 2	3x3 receptiv field	filter ve	

Visualizing convolutional networks

- Take images for which a given unit in a feature map scores high
- Identify the receptive field for each.

Rich feature hierarchies for accurate object detection and semantic segmentation. R. Girshick, J. Donahue, T. Darrell, J. Malik. In *CVPR*, 2014.

Visualizing convolutional networks II

• Block regions of the image and classify

Visualizing and Understanding Convolutional Networks. M. Zeiler and R. Fergus. In ECCV 2014.

Visualizing convolutional networks II

 Image pixels important for classification = pixels when blocked cause misclassification

 (d) Classifier, probability

of correct class

Visualizing and Understanding Convolutional Networks. M. Zeiler and R. Fergus. In ECCV 2014.