
Image recognition



General recipe

• Fix hypothesis class

• Define loss function

• Minimize average loss on the training set using SGD

h(x;w, b) = �(wT�(x) + b)

L(h(x;w, b), y) = �y log h(x;w, b) + (1� y) log(1� h(x;w, b))

Logistic Regression!

min
w,b

1

n

nX

i=1

L(h(xi;w, b), yi)



Optimization using SGD

• Need to minimize average training 
loss
• Initialize parameters
• Repeat 
• Sample minibatch of k training examples

• Compute average gradient of loss on 
minibatch

• Take step along negative ofaverage
gradient



Overfitting = fitting the noise
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Generalization

R(h) = R̂(S, h) + (R(h)� R̂(S, h))

Training 
error

Generalization 
error

R(h) = E(x,y)⇠DL(h(x), y) R̂(S, h) =
1

|S|
X

(x,y)2S

L(h(x), y)



Controlling generalization error

• Variance of empirical risk inversely proportional to size of S (central 
limit theorem)
• Choose very large S!

• Larger the hypothesis class H, Higher the chance of hitting bad 
hypotheses with low training error and high generalization error
• Choose small H!

• For many models, can bound generalization error using some 
property of parameters
• “Regularization”



Back to images



Linear classifiers on pixels are bad

• Solution 1: Better feature vectors
• Solution 2: Non-linear classifiers



Better feature vectors

These must have similar feature 
vectors: invariance

These must have different feature 
vectors: discriminability



SIFT

• Match pattern of edges
• Edge orientation – clue to shape

• Be resilient to small deformations
• Deformations might move pixels around, but slightly
• Deformations might change edge orientations, but slightly

• Not resilient to large deformations: important for recognition
• Other feature representations exist



Linear classifiers on pixels are bad

• Solution 1: Better feature vectors
• Solution 2: Non-linear classifiers
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Non-linear classifiers

• Suppose we have a 
feature vector for every 
image
• Linear classifier
• Nearest neighbor: 

assign each point the 
label of the nearest 
neighbor
• Decision tree: series of 

if-then-else statements 
on different features
• Neural networks / 

multi-layer perceptrons



Multilayer perceptrons

• Key idea: build complex functions by composing simple functions
• Caveat: simple functions must include non-linearities
• W(U(Vx)) = (WUV)x
• Let us start with only two ingredients:
• Linear: y = Wx + b
• Rectified linear unit (ReLU, also called half-wave rectification): y = max(x,0)



The linear function

• y = Wx + b
• Parameters: W,b
• Input: x (column vector, or 1 data point per column)
• Output: y (column vector or 1 data point per column)
• Hyperparameters:
• Input dimension = # of rows in x
• Output dimension = # of rows in y
• W : outdim x indim
• b : outdim x 1



The linear function

• y = Wx + b
• Every row of y corresponds to a hyperplane in x space

=
The case when din = 2. A 
single row in y plotted 
for every possible value 
of x

din
dout



Multilayer perceptrons

• Key idea: build complex functions by composing simple functions

f(x) = Wx f(x) = Wx f(x) = Wxg(x) = 
max(x,0)

g(x) = 
max(x,0)

x

z

1 row of z 
plotted for 

every value of x

1 row of y 
plotted for 

every value of x

y



Multilayer perceptron on images

• An example network for cat vs dog

256

256
65K

Reshape Linear 
+ ReLU

Linear 
+ ReLU

Linear + 
sigmoid

p(dog | 
image)

1024

32



The linear function

• y = Wx + b
• How many parameters does a linear function have?

=
The case when din = 2. A 
single row in y plotted 
for every possible value 
of x

din
dout



The linear function for images

65KW

65K

1024



Reducing parameter count

• A single “pixel” in the output is a weighted combination of all input 
pixels

W



Reducing parameter count

• A single “pixel” in the output is a weighted combination of all input 
pixels



Idea 1: local connectivity

• Instead of inputs and outputs being general vectors suppose we keep 
both as 2D arrays.
• Reasonable assumption: output pixels only produced by nearby input 

pixels



Idea 2: Translation invariance

• Output pixels weighted combination of nearby pixels
• Weights should not depend on the location of the neighborhood



Linear function + translation invariance = 
convolution
• Local connectivity determines kernel size
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Linear function + translation invariance = 
convolution

5.4 0.1 3.6

1.8 2.3 4.5

1.1 3.4 7.2

• Local connectivity determines kernel size
• Running a filter on a single image gives a 

single feature map
Feature map



Convolution with multiple filters
• Running multiple filters gives multiple feature maps
• Each feature map is a channel of the output

5.4 0.1 3.6

1.8 2.3 4.5

1.1 3.4 7.2

Feature map



Convolution over multiple channels
• If the input also has multiple channels, each 

filter also has multiple channels, and output 
of a filter = sum of responses across channels
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*
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Convolution as a primitive

• To get c’ output channels out of c input channels, we need c’ filters of 
c channels each

w

h

c

w

h

c’

Convolution

c

c’



Kernel sizes and padding

• As with standard convolution, we can have ”valid”, “same” or “full” 
convolution (typically valid or same)

k
k



Kernel sizes and padding

• Valid convolution decreases size by (k-1)/2 on each side
• Pad by (k-1)/2!

k
k

Valid 
convolution(k-1)/2



The convolution unit

• Each convolutional unit takes a collection of feature maps as input, 
and produces a collection of feature maps as output
• Parameters: Filters (+bias)
• If cin input feature maps and cout output feature maps
• Each filter is k x k x cin
• There are cout such filters

• Other hyperparameters: padding



Invariance to distortions: Subsampling

• Convolution by itself doesn’t grant invariance
• But by subsampling, large distortions become smaller, so more 

invariance



Convolution-subsampling-convolution

• Interleaving convolutions and subsamplings causes later convolutions 
to capture a larger fraction of the image with the same kernel size
• Set of image pixels that an intermediate output pixel depends on = 

receptive field
• Convolutions after subsamplings increase the receptive feild



Convolution subsampling convolution

• Convolution in earlier steps detects more local patterns less resilient
to distortion
• Convolution in later steps detects more global patterns more resilient 

to distortion
• Subsampling allows capture of larger, more invariant patterns



Strided convolution

• Convolution with stride s = standard convolution + subsampling by 
picking 1 value every s values
• Example: convolution with stride 2 = standard convolution + 

subsampling by a factor of 2
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Invariance to distortions: Average Pooling

…
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4 7 6 9 3 11

8 3 21 4 0 0

1 2 1 3 5 6

7 9 4 3 1 8

5 2 1 5 5 0

0 1 6 4 5 6

Global average pooling

…
5.5

w x h x c

1 x 1 x c
=c dimensional vector



The pooling unit

• Each pooling unit takes a collection of feature maps as input and 
produces a collection of feature maps as output
• Output feature maps are usually smaller in height / width
• Parameters: None



Convolutional networks

Horse

Global 
average 
pooling



Convolutional networks

conv

filters

subsample subsampleconv linear

filters weights



Empirical Risk Minimization

Convolutional network

min
✓

1

N

NX

i=1

L(h(xi;✓), yi)

✓(t+1) = ✓(t) � �
1

N

NX

i=1

rL(h(xi;✓), yi)

Gradient descent update



Computing the gradient of the loss

rL(h(x;✓), y)

z = h(x;✓)

r✓L(z, y) =
@L(z, y)

@z

@z

@✓



Convolutional networks

conv

filters

subsample subsampleconv linear

filters weights



The gradient of convnets
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The gradient of convnets
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Recurrence 
going 

backward!!



The gradient of convnets
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Backpropagation for a sequence of functions

zi = fi(zi�1, wi)

z0 = x
z = zn

@z

@zi
=

@z

@zi+1

@zi+1

@zi

Previous 
term

@z

@wi
=

@z

@zi

@zi
@wi

Function 
derivative



Backpropagation for a sequence of functions

• Assume we can compute partial derivatives of each function

• Use g(zi) to store gradient of z w.r.t zi, g(wi) for wi
• Calculate gi by iterating backwards

• Use gi to compute gradient of parameters

zi = fi(zi�1, wi) z0 = x z = zn

@zi
@zi�1

=
@fi(zi�1, wi)

@zi�1

@zi
@wi

=
@fi(zi�1, wi)

@wi

g(zn) =
@z

@zn
= 1 g(zi�1) =

@z

@zi

@zi
@zi�1

= g(zi)
@zi

@zi�1

g(wi) =
@z

@zi

@zi
@wi

= g(zi)
@zi
@wi



Backpropagation for a sequence of functions

• Each “function” has a “forward” and “backward” module
• Forward module for fi
• takes zi-1 and weight wi as input
• produces zi as output

• Backward module for fi
• takes g(zi ) as input
• produces g(zi-1 ) and  g(wi) as output 

g(wi) = g(zi)
@zi
@wi

g(zi�1) = g(zi)
@zi

@zi�1



Backpropagation for a sequence of functions

fi

zi-
1

zi

wi



Backpropagation for a sequence of functions

fi

g(zi-
1)

g(zi)

g(wi)



Chain rule for vectors

@a

@b
=

@a

@c

@c

@b

@ai
@bj

=
X

k

@ai
@ck

@ck
@bj

@a

@b
(i, j) =

@ai
@bj

Jacobian

@a

@b
=

@a

@c

@c

@b



Loss as a function

conv

filters

subsample subsampleconv linear

filters weights

loss

label



Beyond sequences: computation graphs

• Arbitrary graphs of functions
• No distinction between intermediate outputs and parameters

f
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y

w

u

z



Computation graph - Functions

• Each node implements two functions
• A “forward”

• Computes output given input
• A “backward”

• Computes derivative of z w.r.t input, given derivative of z w.r.t output 



Computation graphs

fi

a

d

c

b



Computation graphs
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Computation graphs

fi
@z

@d

@z
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@z

@b

@z

@c



Neural network frameworks


