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General recipe

Logistic Regression!

h(z;w,b) = o(w! ¢(z) + b)

e Define loss function
L(h(z;w,b),y) = —ylog h(z;w,b) + (1 — y)log(1 — h(z; w,b))

* Fix hypothesis class

* Minimize average loss on the training set using SGD

mm—ZL (x;;W,b),y;)

w,b T



Optimization using SGD

N . 1
* Need to minimize average training min — Z f(z;, vy, 0)
loss o n-—
* Initialize parameters 09) « random
* Repeat fort=1,...,T
 Sample minibatch of k training examples i1, ...,k ~ Uniform(n)
k
« Compute average gradient of loss on glt) 1 Z V(i Y 6=
minibatch k =1
* Take step along negative ofaverage H(t) — H(t_l) — )\g(t)
gradient




Overfitting = fitting the noise

Minimizer of empirical risk

True distribution Sampled training set



Generalization

R(h) = By yynL(h(x),y) R(S,h>=|—;‘ S Lih(z).y)

(x,y)€ES

AN A

R(h) = R(S,h) + (R(h) — R(S, h))

Training Generalization
error error



Controlling generalization error

* Variance of empirical risk inversely proportional to size of S (central
limit theorem)
* Choose very large S!

* Larger the hypothesis class H, Higher the chance of hitting bad
hypotheses with low training error and high generalization error

* Choose small H!

* For many models, can bound generalization error using some
property of parameters
* “Regularization”



Back to images




Linear classifiers on pixels are bad

e Solution 1: Better feature vectors

e Solution 2: Non-linear classifiers




Better feature vectors

These must have different feature
vectors: discriminability

— T~

These must have similar feature
vectors: invariance




SIFT

* Match pattern of edges
* Edge orientation —clue to shape

* Be resilient to small deformations
* Deformations might move pixels around, but slightly
* Deformations might change edge orientations, but slightly

* Not resilient to large deformations: important for recognition
* Other feature representations exist



Linear classifiers on pixels are bad

e Solution 1: Better feature vectors

e Solution 2: Non-linear classifiers




Non-linear classifiers

e Suppose we have a
feature vector for every
Image
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Non-linear classifiers

e Suppose we have a
feature vector for every
Image

* Linear classifier

* Nearest neighbor:
assign each point the
label of the nearest
neighbor

e Decision tree: series of
if-then-else statements
on different features

* Neural networks /
multi-layer perceptrons




Multilayer perceptrons

* Key idea: build complex functions by composing simple functions
e Caveat: simple functions must include non-linearities
* W(U(Vx)) = (WUV)x

* Let us start with only two ingredients:
e Linear:y=Wx+b
* Rectified linear unit (RelLU, also called half-wave rectification): y = max(x,0)



The linear function

cy=Wx+Db

 Parameters: Wb

* Input: x (column vector, or 1 data point per column)
e Qutput: y (column vector or 1 data point per column)

* Hyperparameters:
* Input dimension = # of rows in x
e Output dimension =# of rows iny
* W : outdim x indim
* b:outdimx1



The linear function

cy=Wx+Db

* Every row of y corresponds to a hyperplane in x space

dout

I . I |

The case whend,, = 2. A
single row in y plotted
for every possible value
of x



Multilayer perceptrons

* Key idea: build complex functions by composing simple functions

X g(x) =
max(x,0)

1 row of z 1rowofy
plotted for plotted for

every value of x every value of x



Multilayer perceptron on images

* An example network for cat vs dog
R

s 65K|

1024

A

Linear Linear + p(dog |
image)

+ RelLU sigmoid




The linear function

cy=Wx+Db

* How many parameters does a linear function have?

dout

I . I |

The case whend,, = 2. A
single row in y plotted
for every possible value
of x



The linear function for images

1024
y ~ 65K

65K



Reducing parameter count

* Asingle “pixel” in the output is a weighted combination of all input

pixels
| _




Reducing parameter count

* A single “pixel” in the output is a weighted combination of all input
pixels




ldea 1: local connectivity

* Instead of inputs and outputs being general vectors suppose we keep
both as 2D arrays.

e Reasonable assumption: output pixels only produced by nearby input
pixels P ——




ldea 2: Translation invariance

e Qutput pixels weighted combination of nearby pixels
* Weights should not depend on the location of the neighborhood




Linear function + translation invariance =
convolution

 Local connectivity determines kernel size

54 0.1 3.6

1.8 2.3 4.5

11 3.4 7.2




Linear function + translation invariance =
convolution

* Local connectivity determines kernel size

* Running a filter on a single image gives a Feature map
single feature map

54 0.1 3.6
1.8 2.3 4.5

11 3.4 7.2




Convolution with multiple filters

* Running multiple filters gives multiple feature maps

* Each feature map is a channel of the output Feature map
54 0.1 3.6
1.8 2.3 4.5

11 3.4 7.2




Convolution over multiple channels

3

* If the input also has multiple channels, each
filter also has multiple channels, and output \
of a filter = sum of responses across channels +




Convolution as a primitive

* To get ¢’ output channels out of c input channels, we need ¢’ filters of

c channels each c" '
CI
Lo RURETE ~

. -




Kernel sizes and padding

e As with standard convolution, we can have “valid”, “same” or “full”
convolution (typically valid g




Kernel sizes and padding

* Valid convolution decreases size by (k-1)/2 on each side

- Pad by (k-1)/2!
1. r*\

-
B

Valid %’J‘?‘

|

_ 3
- convolution y




The convolution unit

* Each convolutional unit takes a collection of feature maps as input,
and produces a collection of feature maps as output

* Parameters: Filters (+bias)

* If ¢, input feature maps and c,, output feature maps
* Eachfilteris k x k x ¢;,
* There are c,, such filters

e Other hyperparameters: padding



Invariance to distortions: Subsampling

e Convolution by itself doesn’t grant invariance

* But by subsampling, large distortions become smaller, so more
Invariance




Convolution-subsampling-convolution

* Interleaving convolutions and subsamplings causes later convolutions
to capture a larger fraction of the image with the same kernel size

* Set of image pixels that an intermediate output pixel depends on =
receptive field

* Convolutions after subsamplings increase the receptive feild

.~.~ B




Convolution subsampling convolution

* Convolution in earlier steps detects more local patterns less resilient
to distortion

* Convolution in later steps detects more global patterns more resilient
to distortion

e Subsampling allows capture of larger, more invariant patterns



Strided convolution

* Convolution with stride s = standard convolution + subsampling by
picking 1 value every s values

* Example: convolution with stride 2 = standard convolution +
subsampling by a factor of 2



Invariance to distortions: Average Pooling




Global average pooling

I1x1xc
=c dimensional vector




The pooling unit

* Each pooling unit takes a collection of feature maps as input and
produces a collection of feature maps as output

* Qutput feature maps are usually smaller in height / width
* Parameters: None



Convolutional networks

Global
average
pooling

Horse




Convolutional networks

- = -

»

= -

L)



Empirical Risk Minimization

mm—g L(h(x;; 0

Convolutional network

oY) =9 _ \— ZVL

(zi; 0

—

Gradient descent update

yi)



Computing the gradient of the loss




Convolutional networks

- -+ D - - O

filters filters weights

1

1



The gradient of convnets




The gradient of convnets




The gradient of convnets
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The gradient of convnets

Oz 0z O0zy  Ofs(z4,ws) 0fs(23,ws)
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The gradient of convnets

lg =17
1
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The gradient of convnets
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The gradient of convnets

Z Z Z Z 25 =1
1 1 1 1
W1 W, 3 Wy Ws

0z 0z 0z3
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The gradient of convnets

- 0z (924
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The gradient of convnets

1 1 1 1
% o 82: 824
Oz3  0z4 023
0z 0z 0z3
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The gradient of convnets

i Z Z Z
1 1 1
Wi W W

W, 3 4

=7

1
W

5

0z 0z 0z3 Recurrence
— = going
Ozo  0z3 029 backward!!

0z 0z 0z9

8—102 B 622 (9?1]2




The gradient of convnets

Backpropagation



i = fi(Zz'—hwz')
20 — X
2= Zn

Backpropagation for a sequence of functions

Previous
term

Jz 0z 0z
827; B 8zi+1 (‘97;@

Function
derivative

0z 0z 0z




Backpropagation for a sequence of functions

zi = fi(Zi—1,w;) 0 = & & = Zn
* Assume we can compute partial derivatives of each function

62’@' . 8fi(zi_1,wi) 5’ZZ B 8f7;(z¢_1,wi)
(921'_1 B 8,7;@-_1 811}2' - (911)7;
* Use g(z;) to store gradient of z w.r.t z;, g(w;) for w;
* Calculate g; by iterating backwards

9(zn) = oz 1 g(zi—1) = 9z 071 = 9(2i)

8Zi

0zi—1

* Use gi to compute gradient of parameters
(w;) = 0z 0z; ( .)827;
I\W _(%Z 8’(1}@ AN ow

1



Backpropagation for a sequence of functions

e Each “function” has a “forward” and “backward” module
* Forward module for f.

* takes z, ; and weight w, as input
* produces z; as output
* Backward module for f.
* takes g(z; ) as input
* produces g(z;; ) and g(w;) as output

g(w;) = g(z;)

9(zi—1) = 9(2i)

021 ow;



Backpropagation for a sequence of functions

W/" '



Backpropagation for a sequence of functions




Chain rule for vectors

da _ da e 9,
db  dc db Ob;
%(' ) = da; .
b 1,]) — ab] Jacobian
da  0Oadc

b~ dc db

aCL@' Gck
6’ck @b]




Loss as a function
=B
|
+ E3-3
2}

£ - a=m - B
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Beyond sequences: computation graphs

* Arbitrary graphs of functions
* No distinction between intermediate outputs and parameters

u

X




Computation graph - Functions

* Each node implements two functions

e A “forward”
* Computes output given input

* A “backward”
 Computes derivative of z w.r.t input, given derivative of z w.r.t output



Computation graphs

—1 L2



Computation graphs

0
L




Computation graphs

. - .7
CB" ~



Computation graphs

et




Neural network frameworks

PYTORCH

+Q+> Caffe2



