Image recognition

General recipe

Logistic Regression!

- Fix hypothesis class

$$
h(x ; \mathbf{w}, b)=\sigma\left(\mathbf{w}^{T} \phi(x)+b\right)
$$

- Define loss function
$L(h(x ; \mathbf{w}, b), y)=-y \log h(x ; \mathbf{w}, b)+(1-y) \log (1-h(x ; \mathbf{w}, b))$
- Minimize average loss on the training set using SGD

$$
\min _{\mathbf{w}, b} \frac{1}{n} \sum_{i=1}^{n} L\left(h\left(x_{i} ; \mathbf{w}, b\right), y_{i}\right)
$$

Optimization using SGD

- Need to minimize average training loss
- Initialize parameters
- Repeat
- Sample minibatch of k training examples
- Compute average gradient of loss on minibatch
- Take step along negative ofaverage gradient

Overfitting $=$ fitting the noise

True distribution

Minimizer of empirical risk

Generalization

$$
\begin{gathered}
R(h)=\mathbb{E}_{(x, y) \sim \mathcal{D}} L(h(x), y) \quad \hat{R}(S, h)=\frac{1}{|S|} \sum_{(x, y) \in S} L(h(x), y) \\
R(h)=\hat{R}(S, h)+(R(h)-\hat{R}(S, h)) \\
\text { Training } \\
\text { error }
\end{gathered} \begin{gathered}
\text { Generalization } \\
\text { error }
\end{gathered}
$$

Controlling generalization error

- Variance of empirical risk inversely proportional to size of S (central limit theorem)
- Choose very large S!
- Larger the hypothesis class H , Higher the chance of hitting bad hypotheses with low training error and high generalization error
- Choose small H!
- For many models, can bound generalization error using some property of parameters
- "Regularization"

Back to images

Linear classifiers on pixels are bad

- Solution 1: Better feature vectors
- Solution 2: Non-linear classifiers

Better feature vectors

These must have different feature
vectors: discriminability

SIFT

- Match pattern of edges
- Edge orientation - clue to shape
- Be resilient to small deformations
- Deformations might move pixels around, but slightly
- Deformations might change edge orientations, but slightly
- Not resilient to large deformations: important for recognition
- Other feature representations exist

Linear classifiers on pixels are bad

- Solution 1: Better feature vectors
- Solution 2: Non-linear classifiers

Non-linear classifiers

- Suppose we have a feature vector for every image

Non-linear classifiers

- Suppose we have a feature vector for every image
- Linear classifier

Non-linear classifiers

- Suppose we have a feature vector for every image
- Linear classifier
- Nearest neighbor: assign each point the label of the nearest neighbor

Non-linear classifiers

- Suppose we have a feature vector for every image
- Linear classifier
- Nearest neighbor: assign each point the label of the nearest neighbor
- Decision tree: series of if-then-else statements on different features

Non-linear classifiers

- Suppose we have a feature vector for every image
- Linear classifier
- Nearest neighbor: assign each point the label of the nearest neighbor
- Decision tree: series of if-then-else statements on different features
- Neural networks

Non-linear classifiers

- Suppose we have a feature vector for every image
- Linear classifier
- Nearest neighbor: assign each point the label of the nearest neighbor
- Decision tree: series of if-then-else statements on different features
- Neural networks / multi-layer perceptrons

Multilayer perceptrons

- Key idea: build complex functions by composing simple functions
- Caveat: simple functions must include non-linearities
- $W(U(V x))=(W U V) x$
- Let us start with only two ingredients:
- Linear: $y=W x+b$
- Rectified linear unit (ReLU, also called half-wave rectification): $y=\max (x, 0)$

The linear function

- $y=W x+b$
- Parameters: W,b
- Input: x (column vector, or 1 data point per column)
- Output: y (column vector or 1 data point per column)
- Hyperparameters:
- Input dimension = \# of rows in x
- Output dimension = \# of rows in y
- W : outdim x indim
- b : outdim x 1

The linear function

- $y=W x+b$
- Every row of y corresponds to a hyperplane in x space

The case when $d_{i n}=2$. A single row in y plotted for every possible value of x

Multilayer perceptrons

- Key idea: build complex functions by composing simple functions

Multilayer perceptron on images

- An example network for cat vs dog

The linear function

- $y=W x+b$
- How many parameters does a linear function have?

The case when $d_{i n}=2$. A single row in y plotted for every possible value of x

The linear function for images

Reducing parameter count

- A single "pixel" in the output is a weighted combination of all input pixels

Reducing parameter count

- A single "pixel" in the output is a weighted combination of all input pixels

Idea 1: local connectivity

- Instead of inputs and outputs being general vectors suppose we keep both as 2D arrays.
- Reasonable assumption: output pixels only produced by nearby input pixels

Idea 2: Translation invariance

- Output pixels weighted combination of nearby pixels
- Weights should not depend on the location of the neighborhood

Linear function + translation invariance $=$ convolution

- Local connectivity determines kernel size

5.4	0.1	3.6
1.8	2.3	4.5
1.1	3.4	7.2

Linear function + translation invariance = convolution

- Local connectivity determines kernel size
- Running a filter on a single image gives a single feature map

5.4	0.1	3.6
1.8	2.3	4.5
1.1	3.4	7.2

Convolution with multiple filters

- Running multiple filters gives multiple feature maps
- Each feature map is a channel of the output

Feature map

Convolution over multiple channels

- If the input also has multiple channels, each filter also has multiple channels, and output of a filter = sum of responses across channels

*

Convolution as a primitive

- To get c' output channels out of c input channels, we need c' filters of c channels each

Kernel sizes and padding

- As with standard convolution, we can have "valid", "same" or "full" convolution (typically valid or same)

Kernel sizes and padding

- Valid convolution decreases size by ($k-1$)/2 on each side
- Pad by (k-1)/2!

The convolution unit

- Each convolutional unit takes a collection of feature maps as input, and produces a collection of feature maps as output
- Parameters: Filters (+bias)
- If $c_{\text {in }}$ input feature maps and $c_{\text {out }}$ output feature maps
- Each filter is $\mathrm{kxkx} \mathrm{c}_{\text {in }}$
- There are $\mathrm{c}_{\text {out }}$ such filters
- Other hyperparameters: padding

Invariance to distortions: Subsampling

- Convolution by itself doesn't grant invariance
- But by subsampling, large distortions become smaller, so more invariance

Convolution-subsampling-convolution

- Interleaving convolutions and subsamplings causes later convolutions to capture a larger fraction of the image with the same kernel size
- Set of image pixels that an intermediate output pixel depends on = receptive field
- Convolutions after subsamplings increase the receptive feild

Convolution subsampling convolution

- Convolution in earlier steps detects more local patterns less resilient to distortion
- Convolution in later steps detects more global patterns more resilient to distortion
- Subsampling allows capture of larger, more invariant patterns

Strided convolution

- Convolution with stride $s=$ standard convolution + subsampling by picking 1 value every s values
- Example: convolution with stride $2=$ standard convolution + subsampling by a factor of 2

Invariance to distortions: Average Pooling

4	7	6	9	3	11
8	3	21	4	0	0
1	2	1	3	5	6
7	9	4	3	1	8
5	2	1	5	5	0
0	1	6	4	5	6

Global average pooling

4	7	6	9	3	11
8	3	21	4	0	0
1	2	1	3	5	6
7	9	4	3	1	8
5	2	1	5	5	0
0	1	6	4	5	6

wxhxc

$=c$ dimensional vector

The pooling unit

- Each pooling unit takes a collection of feature maps as input and produces a collection of feature maps as output
- Output feature maps are usually smaller in height / width
- Parameters: None

Convolutional networks

Convolutional networks

Empirical Risk Minimization

$$
\begin{array}{r}
\min _{\boldsymbol{\theta}} \frac{1}{N} \sum_{i=1}^{N} L\left(h\left(x_{i} ; \boldsymbol{\theta}\right), y_{i}\right) \\
\text { Convolutional network }
\end{array}
$$

$$
\boldsymbol{\theta}^{(t+1)}=\boldsymbol{\theta}^{(t)}-\lambda \frac{1}{N} \sum_{i=1}^{N} \nabla L\left(h\left(x_{i} ; \boldsymbol{\theta}\right), y_{i}\right)
$$

Computing the gradient of the loss

$$
\begin{gathered}
\nabla L(h(x ; \boldsymbol{\theta}), y) \\
z=h(x ; \boldsymbol{\theta}) \\
\nabla_{\boldsymbol{\theta}} L(z, y)=\frac{\partial L(z, y)}{\partial z} \frac{\partial z}{\partial \boldsymbol{\theta}}
\end{gathered}
$$

Convolutional networks

The gradient of convnets

The gradient of convnets

$$
\frac{\partial z}{\partial w_{5}}
$$

The gradient of convnets

$\frac{\partial z}{\partial w_{4}}$

The gradient of convnets

$$
\begin{aligned}
& \frac{\partial z}{\partial w_{4}}=\frac{\partial z}{\partial z_{4}} \frac{\partial z_{4}}{\partial w_{4}}
\end{aligned}
$$

The gradient of convnets

$$
\begin{aligned}
& \frac{\partial z}{\partial w_{4}}=\frac{\partial z}{\partial z_{4}} \frac{\partial z_{4}}{\partial w_{4}}
\end{aligned}
$$

The gradient of convnets

$$
\frac{\partial z}{\partial w_{4}}=\frac{\partial z}{\partial z_{4}} \frac{\partial z_{4}}{\partial w_{4}}=\frac{\partial f_{5}\left(z_{4}, w_{5}\right)}{\partial z_{4}} \frac{\partial f_{4}\left(z_{3}, w_{4}\right)}{\partial w_{4}}
$$

The gradient of convnets

$$
\begin{aligned}
& +n_{1}^{2}+n_{1}^{2} \\
& \frac{\partial z}{\partial w_{4}}=\frac{\partial z}{\partial z_{4}} \frac{\partial z_{4}}{\partial w_{4}}=\frac{\partial f_{5}\left(z_{4}, w_{5}\right)}{\partial z_{4}} \frac{\partial f_{4}\left(z_{3}, w_{4}\right)}{\partial w_{4}}
\end{aligned}
$$

The gradient of convnets

The gradient of convnets

The gradient of convnets

$$
\frac{\partial z}{\partial w_{3}}=\frac{\partial z}{\partial z_{3}} \frac{\partial z_{3}}{\partial w_{3}}
$$

The gradient of convnets

$$
\frac{\partial z}{\partial w_{3}}=\frac{\partial z}{\partial z_{3}} \frac{\partial z_{3}}{\partial w_{3}}
$$

The gradient of convnets

Backppopagation

Backpropagation for a sequence of functions

$$
\begin{aligned}
& \text { Previous } \\
& \text { term } \\
& z_{i}=f_{i}\left(z_{i-1}, w_{i}\right) \\
& z_{0}=x \\
& z=z_{n}
\end{aligned}
$$

Backpropagation for a sequence of functions

$$
z_{i}=f_{i}\left(z_{i-1}, w_{i}\right) \quad z_{0}=x \quad z=z_{n}
$$

- Assume we can compute partial derivatives of each function

$$
\frac{\partial z_{i}}{\partial z_{i-1}}=\frac{\partial f_{i}\left(z_{i-1}, w_{i}\right)}{\partial z_{i-1}} \quad \frac{\partial z_{i}}{\partial w_{i}}=\frac{\partial f_{i}\left(z_{i-1}, w_{i}\right)}{\partial w_{i}}
$$

- Use $g\left(z_{i}\right)$ to store gradient of z w.r.t $z_{i}, g\left(w_{i}\right)$ for w_{i}
- Calculate g_{i} by iterating backwards

$$
g\left(z_{n}\right)=\frac{\partial z}{\partial z_{n}}=1 \quad g\left(z_{i-1}\right)=\frac{\partial z}{\partial z_{i}} \frac{\partial z_{i}}{\partial z_{i-1}}=g\left(z_{i}\right) \frac{\partial z_{i}}{\partial z_{i-1}}
$$

- Use gi to compute gradient of parameters

$$
g\left(w_{i}\right)=\frac{\partial z}{\partial z_{i}} \frac{\partial z_{i}}{\partial w_{i}}=g\left(z_{i}\right) \frac{\partial z_{i}}{\partial w_{i}}
$$

Backpropagation for a sequence of functions

- Each "function" has a "forward" and "backward" module
- Forward module for f_{i}
- takes $\mathrm{z}_{\mathrm{i}-1}$ and weight w_{i} as input
- produces z_{i} as output
- Backward module for f_{i}
- takes $g\left(z_{i}\right)$ as input
- produces $g\left(z_{i-1}\right)$ and $g\left(w_{i}\right)$ as output

$$
g\left(z_{i-1}\right)=g\left(z_{i}\right) \frac{\partial z_{i}}{\partial z_{i-1}} \quad g\left(w_{i}\right)=g\left(z_{i}\right) \frac{\partial z_{i}}{\partial w_{i}}
$$

Backpropagation for a sequence of functions

Backpropagation for a sequence of functions

Chain rule for vectors

$$
\begin{gathered}
\frac{\partial a}{\partial b}=\frac{\partial a}{\partial c} \frac{\partial c}{\partial b} \quad \frac{\partial a_{i}}{\partial b_{j}}=\sum_{k} \frac{\partial a_{i}}{\partial c_{k}} \frac{\partial c_{k}}{\partial b_{j}} \\
\frac{\partial \mathbf{a}}{\partial \mathbf{b}}(i, j)=\frac{\partial a_{i}}{\partial b_{j}} \\
\frac{\partial \mathbf{a}}{\partial \mathbf{b}}=\frac{\partial \mathbf{a}}{\partial \mathbf{c}} \frac{\partial \mathbf{c}}{\partial \mathbf{b}}
\end{gathered}
$$

Loss as a function

Beyond sequences: computation graphs

- Arbitrary graphs of functions
- No distinction between intermediate outputs and parameters

Computation graph - Functions

- Each node implements two functions
- A "forward"
- Computes output given input
- A "backward"
- Computes derivative of z w.r.t input, given derivative of z w.r.t output

Computation graphs

Computation graphs

Computation graphs

Computation graphs

Neural network frameworks

```
PYTÓRCH
```

䔲 Caffe2

