lmage recognition

General recipe

Logistic Regression!

h(z;w,b) = o(w! ¢(z) + b)

e Define loss function
L(h(z;w,b),y) = —ylog h(z;w,b) + (1 — y)log(1 — h(z; w,b))

* Fix hypothesis class

* Minimize average loss on the training set using SGD

mm—ZL (x;;W,b),y;)

w,b T

Optimization using SGD

N . 1
* Need to minimize average training min — Z f(z;, vy, 0)
loss o n-—
* Initialize parameters 09) « random
* Repeat fort=1,...,T
 Sample minibatch of k training examples i1, ...,k ~ Uniform(n)
k
« Compute average gradient of loss on glt) 1 Z V(i Y 6=
minibatch k =1
* Take step along negative ofaverage H(t) — H(t_l) —)\g(t)
gradient

Overfitting = fitting the noise

Minimizer of empirical risk

True distribution Sampled training set

Generalization

R(h) = By yynL(h(x),y) R(S,h>=|—;‘ S Lih(z).y)

(x,y)€ES

AN A

R(h) = R(S,h) + (R(h) — R(S, h))

Training Generalization
error error

Controlling generalization error

* Variance of empirical risk inversely proportional to size of S (central
limit theorem)
* Choose very large S!

* Larger the hypothesis class H, Higher the chance of hitting bad
hypotheses with low training error and high generalization error

* Choose small H!

* For many models, can bound generalization error using some
property of parameters
* “Regularization”

Back to images

Linear classifiers on pixels are bad

e Solution 1: Better feature vectors

e Solution 2: Non-linear classifiers

Better feature vectors

These must have different feature
vectors: discriminability

— T~

These must have similar feature
vectors: invariance

SIFT

* Match pattern of edges
* Edge orientation —clue to shape

* Be resilient to small deformations
* Deformations might move pixels around, but slightly
* Deformations might change edge orientations, but slightly

* Not resilient to large deformations: important for recognition
* Other feature representations exist

Linear classifiers on pixels are bad

e Solution 1: Better feature vectors

e Solution 2: Non-linear classifiers

Non-linear classifiers

e Suppose we have a
feature vector for every
Image

Non-linear classifiers

* Suppose we have a
feature vector for every
image

* Linear classifier

Non-linear classifiers

e Suppose we have a
feature vector for every
Image

* Linear classifier

* Nearest neighbor:
assign each point the
label of the nearest
neighbor

Non-linear classifiers

e Suppose we have a
feature vector for every
Image

* Linear classifier

* Nearest neighbor:
assign each point the
label of the nearest
neighbor

e Decision tree: series of
if-then-else statements
on different features

Non-linear classifiers

e Suppose we have a
feature vector for every
Image

* Linear classifier

* Nearest neighbor:
assign each point the
label of the nearest
neighbor

e Decision tree: series of
if-then-else statements
on different features

* Neural networks

Non-linear classifiers

e Suppose we have a
feature vector for every
Image

* Linear classifier

* Nearest neighbor:
assign each point the
label of the nearest
neighbor

e Decision tree: series of
if-then-else statements
on different features

* Neural networks /
multi-layer perceptrons

Multilayer perceptrons

* Key idea: build complex functions by composing simple functions
e Caveat: simple functions must include non-linearities
* W(U(Vx)) = (WUV)x

* Let us start with only two ingredients:
e Linear:y=Wx+b
* Rectified linear unit (RelLU, also called half-wave rectification): y = max(x,0)

The linear function

cy=Wx+Db

 Parameters: Wb

* Input: x (column vector, or 1 data point per column)
e Qutput: y (column vector or 1 data point per column)

* Hyperparameters:
* Input dimension = # of rows in x
e Output dimension =# of rows iny
* W : outdim x indim
* b:outdimx1

The linear function

cy=Wx+Db

* Every row of y corresponds to a hyperplane in x space

dout

I . I |

The case whend,, = 2. A
single row in y plotted
for every possible value
of x

Multilayer perceptrons

* Key idea: build complex functions by composing simple functions

X g(x) =
max(x,0)

1 row of z 1rowofy
plotted for plotted for

every value of x every value of x

Multilayer perceptron on images

* An example network for cat vs dog
R

s 65K|

1024

A

Linear Linear + p(dog |
image)

+ RelLU sigmoid

The linear function

cy=Wx+Db

* How many parameters does a linear function have?

dout

I . I |

The case whend,, = 2. A
single row in y plotted
for every possible value
of x

The linear function for images

1024
y ~ 65K

65K

Reducing parameter count

* Asingle “pixel” in the output is a weighted combination of all input

pixels
| _

Reducing parameter count

* A single “pixel” in the output is a weighted combination of all input
pixels

ldea 1: local connectivity

* Instead of inputs and outputs being general vectors suppose we keep
both as 2D arrays.

e Reasonable assumption: output pixels only produced by nearby input
pixels P ——

ldea 2: Translation invariance

e Qutput pixels weighted combination of nearby pixels
* Weights should not depend on the location of the neighborhood

Linear function + translation invariance =
convolution

 Local connectivity determines kernel size

54 0.1 3.6

1.8 2.3 4.5

11 3.4 7.2

Linear function + translation invariance =
convolution

* Local connectivity determines kernel size

* Running a filter on a single image gives a Feature map
single feature map

54 0.1 3.6
1.8 2.3 4.5

11 3.4 7.2

Convolution with multiple filters

* Running multiple filters gives multiple feature maps

* Each feature map is a channel of the output Feature map
54 0.1 3.6
1.8 2.3 4.5

11 3.4 7.2

Convolution over multiple channels

3

* If the input also has multiple channels, each
filter also has multiple channels, and output \
of a filter = sum of responses across channels +

Convolution as a primitive

* To get ¢’ output channels out of c input channels, we need ¢’ filters of

c channels each c" '
CI
Lo RURETE ~

. -

Kernel sizes and padding

e As with standard convolution, we can have “valid”, “same” or “full”
convolution (typically valid g

Kernel sizes and padding

* Valid convolution decreases size by (k-1)/2 on each side

- Pad by (k-1)/2!
1. r*\

-
B

Valid %’J‘?‘

|

_ 3
- convolution y

The convolution unit

* Each convolutional unit takes a collection of feature maps as input,
and produces a collection of feature maps as output

* Parameters: Filters (+bias)

* If ¢, input feature maps and c,, output feature maps
* Eachfilteris k x k x ¢;,
* There are c,, such filters

e Other hyperparameters: padding

Invariance to distortions: Subsampling

e Convolution by itself doesn’t grant invariance

* But by subsampling, large distortions become smaller, so more
Invariance

Convolution-subsampling-convolution

* Interleaving convolutions and subsamplings causes later convolutions
to capture a larger fraction of the image with the same kernel size

* Set of image pixels that an intermediate output pixel depends on =
receptive field

* Convolutions after subsamplings increase the receptive feild

.~.~ B

Convolution subsampling convolution

* Convolution in earlier steps detects more local patterns less resilient
to distortion

* Convolution in later steps detects more global patterns more resilient
to distortion

e Subsampling allows capture of larger, more invariant patterns

Strided convolution

* Convolution with stride s = standard convolution + subsampling by
picking 1 value every s values

* Example: convolution with stride 2 = standard convolution +
subsampling by a factor of 2

Invariance to distortions: Average Pooling

Global average pooling

I1x1xc
=c dimensional vector

The pooling unit

* Each pooling unit takes a collection of feature maps as input and
produces a collection of feature maps as output

* Qutput feature maps are usually smaller in height / width
* Parameters: None

Convolutional networks

Global
average
pooling

Horse

Convolutional networks

- = -

»

= -

L)

Empirical Risk Minimization

mm—g L(h(x;; 0

Convolutional network

oY) =9 _ \— ZVL

(zi; 0

—

Gradient descent update

yi)

Computing the gradient of the loss

Convolutional networks

- -+ D - - O

filters filters weights

1

1

The gradient of convnets

The gradient of convnets

The gradient of convnets

W5

0z

8?1]4

The gradient of convnets

The gradient of convnets

The gradient of convnets

Oz 0z O0zy Ofs(24,ws) 0fs(23,ws)

Ows Oz Ow, 024 Ow,

The gradient of convnets

Oz 0z Oz Ofs(z4,ws) Ofa(23,ws)

Ows Oz, Owy 024 Ow,

The gradient of convnets

Oz 0z O0zy Ofs(z4,ws) 0fs(23,ws)

Ows Oz, Ow, 024 Ow,

The gradient of convnets

lg =17
1

W5

Z yA YA yA
1 1 1
W1 W, Wy

3

0z

Ows

The gradient of convnets

0z 0z 0z3

821}3 - (923 ng

The gradient of convnets

Z Z Z Z 25 =1
1 1 1 1
W1 W, 3 Wy Ws

0z 0z 0z3

8—@03 - (923 8w3

The gradient of convnets

- 0z (924
 Oz4 023
0z Oz3

- 323 (?wg

The gradient of convnets

1 1 1 1
% o 82: 824
Oz3 0z4 023
0z 0z 0z3

8—103 - 823 8w3

The gradient of convnets

i Z Z Z
1 1 1
Wi W W

W, 3 4

=7

1
W

5

0z 0z 0z3 Recurrence
— = going
Ozo 0z3 029 backward!!

0z 0z 0z9

8—102 B 622 (9?1]2

The gradient of convnets

Backpropagation

i = fi(Zz'—hwz')
20 — X
2= Zn

Backpropagation for a sequence of functions

Previous
term

Jz 0z 0z
827; B 8zi+1 (‘97;@

Function
derivative

0z 0z 0z

Backpropagation for a sequence of functions

zi = fi(Zi—1,w;) 0 = & & = Zn
* Assume we can compute partial derivatives of each function

62’@' . 8fi(zi_1,wi) 5’ZZ B 8f7;(z¢_1,wi)
(921'_1 B 8,7;@-_1 811}2' - (911)7;
* Use g(z;) to store gradient of z w.r.t z;, g(w;) for w;
* Calculate g; by iterating backwards

9(zn) = oz 1 g(zi—1) = 9z 071 = 9(2i)

8Zi

0zi—1

* Use gi to compute gradient of parameters
(w;) = 0z 0z; (.)827;
I\W _(%Z 8’(1}@ AN ow

1

Backpropagation for a sequence of functions

e Each “function” has a “forward” and “backward” module
* Forward module for f.

* takes z, ; and weight w, as input
* produces z; as output
* Backward module for f.
* takes g(z;) as input
* produces g(z;;) and g(w;) as output

g(w;) = g(z;)

9(zi—1) = 9(2i)

021 ow;

Backpropagation for a sequence of functions

W/" '

Backpropagation for a sequence of functions

Chain rule for vectors

da _ da e 9,
db dc db Ob;
%(') = da; .
b 1,]) — ab] Jacobian
da 0Oadc

b~ dc db

aCL@' Gck
6’ck @b]

Loss as a function
=B
|
+ E3-3
2}

£ - a=m - B

1

Beyond sequences: computation graphs

* Arbitrary graphs of functions
* No distinction between intermediate outputs and parameters

u

X

Computation graph - Functions

* Each node implements two functions

e A “forward”
* Computes output given input

* A “backward”
 Computes derivative of z w.r.t input, given derivative of z w.r.t output

Computation graphs

—1 L2

Computation graphs

0
L

Computation graphs

. - .7
CB" ~

Computation graphs

et

Neural network frameworks

PYTORCH

+Q+> Caffe2

