
Image recognition

General recipe

• Fix hypothesis class

• Define loss function

• Minimize average loss on the training set using SGD

h(x;w, b) = �(wT�(x) + b)

L(h(x;w, b), y) = �y log h(x;w, b) + (1� y) log(1� h(x;w, b))

Logistic Regression!

min
w,b

1

n

nX

i=1

L(h(xi;w, b), yi)

Optimization using SGD

• Need to minimize average training
loss
• Initialize parameters
• Repeat
• Sample minibatch of k training examples

• Compute average gradient of loss on
minibatch

• Take step along negative ofaverage
gradient

Overfitting = fitting the noise

True distribution

Minim
ize

r o
f e

xpecte
d ris

k

Minimizer of empirical risk

Sampled training set

Generalization

R(h) = R̂(S, h) + (R(h)� R̂(S, h))

Training
error

Generalization
error

R(h) = E(x,y)⇠DL(h(x), y) R̂(S, h) =
1

|S|
X

(x,y)2S

L(h(x), y)

Controlling generalization error

• Variance of empirical risk inversely proportional to size of S (central
limit theorem)
• Choose very large S!

• Larger the hypothesis class H, Higher the chance of hitting bad
hypotheses with low training error and high generalization error
• Choose small H!

• For many models, can bound generalization error using some
property of parameters
• “Regularization”

Back to images

Linear classifiers on pixels are bad

• Solution 1: Better feature vectors
• Solution 2: Non-linear classifiers

Better feature vectors

These must have similar feature
vectors: invariance

These must have different feature
vectors: discriminability

SIFT

• Match pattern of edges
• Edge orientation – clue to shape

• Be resilient to small deformations
• Deformations might move pixels around, but slightly
• Deformations might change edge orientations, but slightly

• Not resilient to large deformations: important for recognition
• Other feature representations exist

Linear classifiers on pixels are bad

• Solution 1: Better feature vectors
• Solution 2: Non-linear classifiers

Non-linear classifiers

• Suppose we have a
feature vector for every
image

Non-linear classifiers

• Suppose we have a
feature vector for every
image
• Linear classifier

Non-linear classifiers

• Suppose we have a
feature vector for every
image
• Linear classifier
• Nearest neighbor:

assign each point the
label of the nearest
neighbor

Non-linear classifiers

• Suppose we have a
feature vector for every
image
• Linear classifier
• Nearest neighbor:

assign each point the
label of the nearest
neighbor
• Decision tree: series of

if-then-else statements
on different features

Non-linear classifiers

• Suppose we have a
feature vector for every
image
• Linear classifier
• Nearest neighbor:

assign each point the
label of the nearest
neighbor
• Decision tree: series of

if-then-else statements
on different features
• Neural networks

Non-linear classifiers

• Suppose we have a
feature vector for every
image
• Linear classifier
• Nearest neighbor:

assign each point the
label of the nearest
neighbor
• Decision tree: series of

if-then-else statements
on different features
• Neural networks /

multi-layer perceptrons

Multilayer perceptrons

• Key idea: build complex functions by composing simple functions
• Caveat: simple functions must include non-linearities
• W(U(Vx)) = (WUV)x
• Let us start with only two ingredients:
• Linear: y = Wx + b
• Rectified linear unit (ReLU, also called half-wave rectification): y = max(x,0)

The linear function

• y = Wx + b
• Parameters: W,b
• Input: x (column vector, or 1 data point per column)
• Output: y (column vector or 1 data point per column)
• Hyperparameters:
• Input dimension = # of rows in x
• Output dimension = # of rows in y
• W : outdim x indim
• b : outdim x 1

The linear function

• y = Wx + b
• Every row of y corresponds to a hyperplane in x space

=
The case when din = 2. A
single row in y plotted
for every possible value
of x

din
dout

Multilayer perceptrons

• Key idea: build complex functions by composing simple functions

f(x) = Wx f(x) = Wx f(x) = Wxg(x) =
max(x,0)

g(x) =
max(x,0)

x

z

1 row of z
plotted for

every value of x

1 row of y
plotted for

every value of x

y

Multilayer perceptron on images

• An example network for cat vs dog

256

256
65K

Reshape Linear
+ ReLU

Linear
+ ReLU

Linear +
sigmoid

p(dog |
image)

1024

32

The linear function

• y = Wx + b
• How many parameters does a linear function have?

=
The case when din = 2. A
single row in y plotted
for every possible value
of x

din
dout

The linear function for images

65KW

65K

1024

Reducing parameter count

• A single “pixel” in the output is a weighted combination of all input
pixels

W

Reducing parameter count

• A single “pixel” in the output is a weighted combination of all input
pixels

Idea 1: local connectivity

• Instead of inputs and outputs being general vectors suppose we keep
both as 2D arrays.
• Reasonable assumption: output pixels only produced by nearby input

pixels

Idea 2: Translation invariance

• Output pixels weighted combination of nearby pixels
• Weights should not depend on the location of the neighborhood

Linear function + translation invariance =
convolution
• Local connectivity determines kernel size

5.4 0.1 3.6

1.8 2.3 4.5

1.1 3.4 7.2

Linear function + translation invariance =
convolution

5.4 0.1 3.6

1.8 2.3 4.5

1.1 3.4 7.2

• Local connectivity determines kernel size
• Running a filter on a single image gives a

single feature map
Feature map

Convolution with multiple filters
• Running multiple filters gives multiple feature maps
• Each feature map is a channel of the output

5.4 0.1 3.6

1.8 2.3 4.5

1.1 3.4 7.2

Feature map

Convolution over multiple channels
• If the input also has multiple channels, each

filter also has multiple channels, and output
of a filter = sum of responses across channels

*

*

*

*
+

+
=

Convolution as a primitive

• To get c’ output channels out of c input channels, we need c’ filters of
c channels each

w

h

c

w

h

c’

Convolution

c

c’

Kernel sizes and padding

• As with standard convolution, we can have ”valid”, “same” or “full”
convolution (typically valid or same)

k
k

Kernel sizes and padding

• Valid convolution decreases size by (k-1)/2 on each side
• Pad by (k-1)/2!

k
k

Valid
convolution(k-1)/2

The convolution unit

• Each convolutional unit takes a collection of feature maps as input,
and produces a collection of feature maps as output
• Parameters: Filters (+bias)
• If cin input feature maps and cout output feature maps
• Each filter is k x k x cin
• There are cout such filters

• Other hyperparameters: padding

Invariance to distortions: Subsampling

• Convolution by itself doesn’t grant invariance
• But by subsampling, large distortions become smaller, so more

invariance

Convolution-subsampling-convolution

• Interleaving convolutions and subsamplings causes later convolutions
to capture a larger fraction of the image with the same kernel size
• Set of image pixels that an intermediate output pixel depends on =

receptive field
• Convolutions after subsamplings increase the receptive feild

Convolution subsampling convolution

• Convolution in earlier steps detects more local patterns less resilient
to distortion
• Convolution in later steps detects more global patterns more resilient

to distortion
• Subsampling allows capture of larger, more invariant patterns

Strided convolution

• Convolution with stride s = standard convolution + subsampling by
picking 1 value every s values
• Example: convolution with stride 2 = standard convolution +

subsampling by a factor of 2

4 7 6 9 3 11

8 3 21 4 0 0

1 2 1 3 5 6

7 9 4 3 1 8

5 2 1 5 5 0

0 1 6 4 5 6

Invariance to distortions: Average Pooling

…
5.5 10 3.5

4.75 2.75 5

2 4 4

4 7 6 9 3 11

8 3 21 4 0 0

1 2 1 3 5 6

7 9 4 3 1 8

5 2 1 5 5 0

0 1 6 4 5 6

Global average pooling

…
5.5

w x h x c

1 x 1 x c
=c dimensional vector

The pooling unit

• Each pooling unit takes a collection of feature maps as input and
produces a collection of feature maps as output
• Output feature maps are usually smaller in height / width
• Parameters: None

Convolutional networks

Horse

Global
average
pooling

Convolutional networks

conv

filters

subsample subsampleconv linear

filters weights

Empirical Risk Minimization

Convolutional network

min
✓

1

N

NX

i=1

L(h(xi;✓), yi)

✓(t+1) = ✓(t) � �
1

N

NX

i=1

rL(h(xi;✓), yi)

Gradient descent update

Computing the gradient of the loss

rL(h(x;✓), y)

z = h(x;✓)

r✓L(z, y) =
@L(z, y)

@z

@z

@✓

Convolutional networks

conv

filters

subsample subsampleconv linear

filters weights

The gradient of convnets

f1 f2 f3 f4 f5x

w1 w2 w3 w4 w5

z
1

z
2

z
3

z
4

z5 = z

The gradient of convnets

f1 f2 f3 f4 f5x

w1 w2 w3 w4 w5

z
1

z
2

z
3

z
4

z5 = z

@z

@w5
=

@f5(z4, w5)

@w5

@z

@w4
=

@z

@z4

@z4
@w4

=
@f5(z4, w5)

@z4

@f4(z3, w4)

@w4

The gradient of convnets

f1 f2 f3 f4 f5x

w1 w2 w3 w4 w5

z
1

z
2

z
3

z
4

z5 = z

@z

@w4
=

@z

@z4

@z4
@w4

=
@f5(z4, w5)

@z4

@f4(z3, w4)

@w4

The gradient of convnets

f1 f2 f3 f4 f5x

w1 w2 w3 w4 w5

z
1

z
2

z
3

z
4

z5 = z

@z

@w4
=

@z

@z4

@z4
@w4

=
@f5(z4, w5)

@z4

@f4(z3, w4)

@w4

The gradient of convnets

f1 f2 f3 f4 f5x

w1 w2 w3 w4 w5

z
1

z
2

z
3

z
4

z5 = z

@z

@w4
=

@z

@z4

@z4
@w4

=
@f5(z4, w5)

@z4

@f4(z3, w4)

@w4

The gradient of convnets

f1 f2 f3 f4 f5x

w1 w2 w3 w4 w5

z
1

z
2

z
3

z
4

z5 = z

@z

@w4
=

@z

@z4

@z4
@w4

=
@f5(z4, w5)

@z4

@f4(z3, w4)

@w4

The gradient of convnets

f1 f2 f3 f4 f5x

w1 w2 w3 w4 w5

z
1

z
2

z
3

z
4

z5 = z

@z

@w4
=

@z

@z4

@z4
@w4

=
@f5(z4, w5)

@z4

@f4(z3, w4)

@w4

The gradient of convnets

f1 f2 f3 f4 f5x

w1 w2 w3 w4 w5

z
1

z
2

z
3

z
4

z5 = z

The gradient of convnets

f1 f2 f3 f4 f5x

w1 w2 w3 w4 w5

z
1

z
2

z
3

z
4

z5 = z

@z

@w3
=

@z

@z3

@z3
@w3

The gradient of convnets

f1 f2 f3 f4 f5x

w1 w2 w3 w4 w5

z
1

z
2

z
3

z
4

z5 = z

@z

@w3
=

@z

@z3

@z3
@w3

The gradient of convnets

f1 f2 f3 f4 f5x

w1 w2 w3 w4 w5

z
1

z
2

z
3

z
4

z5 = z

@z

@w3
=

@z

@z3

@z3
@w3

The gradient of convnets

f1 f2 f3 f4 f5x

w1 w2 w3 w4 w5

z
1

z
2

z
3

z
4

z5 = z

@z

@w3
=

@z

@z3

@z3
@w3

@z

@z3
=

@z

@z4

@z4
@z3

The gradient of convnets

f1 f2 f3 f4 f5x

w1 w2 w3 w4 w5

z
1

z
2

z
3

z
4

z5 = z

@z

@w3
=

@z

@z3

@z3
@w3

@z

@z3
=

@z

@z4

@z4
@z3

The gradient of convnets

f1 f2 f3 f4 f5x

w1 w2 w3 w4 w5

z
1

z
2

z
3

z
4

z5 = z

@z

@z2
=

@z

@z3

@z3
@z2

@z

@w2
=

@z

@z2

@z2
@w2

Recurrence
going

backward!!

The gradient of convnets

f1 f2 f3 f4 f5x

w1 w2 w3 w4 w5

z
1

z
2

z
3

z
4

z5 = z

Backpropagation for a sequence of functions

zi = fi(zi�1, wi)

z0 = x
z = zn

@z

@zi
=

@z

@zi+1

@zi+1

@zi

Previous
term

@z

@wi
=

@z

@zi

@zi
@wi

Function
derivative

Backpropagation for a sequence of functions

• Assume we can compute partial derivatives of each function

• Use g(zi) to store gradient of z w.r.t zi, g(wi) for wi
• Calculate gi by iterating backwards

• Use gi to compute gradient of parameters

zi = fi(zi�1, wi) z0 = x z = zn

@zi
@zi�1

=
@fi(zi�1, wi)

@zi�1

@zi
@wi

=
@fi(zi�1, wi)

@wi

g(zn) =
@z

@zn
= 1 g(zi�1) =

@z

@zi

@zi
@zi�1

= g(zi)
@zi

@zi�1

g(wi) =
@z

@zi

@zi
@wi

= g(zi)
@zi
@wi

Backpropagation for a sequence of functions

• Each “function” has a “forward” and “backward” module
• Forward module for fi
• takes zi-1 and weight wi as input
• produces zi as output

• Backward module for fi
• takes g(zi) as input
• produces g(zi-1) and g(wi) as output

g(wi) = g(zi)
@zi
@wi

g(zi�1) = g(zi)
@zi

@zi�1

Backpropagation for a sequence of functions

fi

zi-
1

zi

wi

Backpropagation for a sequence of functions

fi

g(zi-
1)

g(zi)

g(wi)

Chain rule for vectors

@a

@b
=

@a

@c

@c

@b

@ai
@bj

=
X

k

@ai
@ck

@ck
@bj

@a

@b
(i, j) =

@ai
@bj

Jacobian

@a

@b
=

@a

@c

@c

@b

Loss as a function

conv

filters

subsample subsampleconv linear

filters weights

loss

label

Beyond sequences: computation graphs

• Arbitrary graphs of functions
• No distinction between intermediate outputs and parameters

f

h

g k

l

x

y

w

u

z

Computation graph - Functions

• Each node implements two functions
• A “forward”

• Computes output given input
• A “backward”

• Computes derivative of z w.r.t input, given derivative of z w.r.t output

Computation graphs

fi

a

d

c

b

Computation graphs

fi
@z

@d

@z

@a

@z

@b

@z

@c

Computation graphs

fi

a

d

c

b

Computation graphs

fi
@z

@d

@z

@a

@z

@b

@z

@c

Neural network frameworks

