Other approaches to obtaining 3D structure

Active stereo with structured light

- Project "structured" light patterns onto the object
- simplifies the correspondence problem
- Allows us to use only one camera

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured Light and

Active stereo with structured light

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming. 3DPVT 2002

Microsoft Kinect

Light and geometry

Till now: 3D structure from multiple cameras

- Problems:
- requires calibrated cameras
- requires correspondence
- Other cues to 3D structure?

What does 3D structure mean?

- We have been talking about the depth of a pixel

What does 3D structure mean?

- But we can also look at the orientation of the surface at each pixel: surface normal

Not enough by itself to reveal absolute locations, but gives enough of a clue to object shape

Shading is a cue to surface orientation

Facing away from the sun, hence dark "shadow"

Shading is a cue to surface orientation

- Till now we have looked at where a pixel comes from
- Now: what is its color?
- Depends on:
- Color and amount of lighting
- Orientation of surface relative to lighting
- Paint on the surface

How does light interact with the scene?

- Light is a bunch of photons
- Photons are energy packets
- Light starts from the light source, is reflected / absorbed by surfaces and lands on the camera
- Two key questions:
- What property of light does a camera pixel record? Radiance
- How does the radiance of a pixel depend on lighting, shape and paint?

Radiance

- How do we measure the "strength" of a beam of light?
- Idea: put a sensor and see how much energy it gets

Radiance

- How do we measure the "strength" of a beam of light?
- Radiance: power in a particular direction per unit area when surface is orthogonal to direction

Radiance

- Pixels measure radiance

Where do the rays come from?

- Rays from the light source "reflect" off a surface and reach camera
- Surface gets some energy from the light source: irradiance
- Depending on paint, some of this energy is reflected back

Irradiance

- What is the energy received by a surface from a light source?
- Depends on the area of the surface and its orientation relative to light

All disks receive same energy

$A \cos \theta$

Irradiance

- Power received by a surface patch
- of area A
- from a beam of radiance L
- coming at angle $\theta=\mathrm{LA} \cos \theta$

Irradiance

- Power received by a surface patch of unit area
- from a beam of radiance L
- coming at angle $\theta=\mathrm{L} \cos \theta$
- Called Irradiance
- Irradiance = Radiance of ray* $\cos \theta$
- Total power = Irradiance * Area

Light rays interacting with a surface

- Light of radiance L_{i} comes from light source at an incoming direction θ_{i} : incoming power $=L_{i} \cos \theta_{i}$
- Surface absorbs some of this energy and reflects a fraction in the outgoing direction θ_{r}
- Fraction might depend on incoming light and outgoing light direction
- Fraction $=\rho\left(\theta_{i}, \theta_{r}\right)$
- Outgoing radiance $L_{r}=$ fraction * incoming power
- \mathbf{N} is surface normal
- \mathbf{L} is direction of light, making θ_{i} with normal
- \mathbf{V} is viewing direction, making θ_{r} with normal

Light rays interacting with a surface

- \mathbf{N} is surface normal
- \mathbf{L} is direction of light, making θ_{i} with normal
- \mathbf{V} is viewing direction, making θ_{r} with normal

Output radiance along V

$$
L_{r}=\rho\left(\theta_{i}, \theta_{r}\right) L_{i} \cos \theta_{i} \rightarrow \stackrel{\text { irradiance along }}{\text { Incoming }}
$$

Light rays interacting with a surface

- In reality:
- World is 3D, so incoming and outgoing directions are not angles θ_{i}, θ_{r} but general 3D directions Ω_{i}, Ω_{r} (represented by "solid angles")
- Light might come from all directions with different radiance: need to integrate
- Final equation:

Outgoing radiance at a point in direction Ω_{r}

Radiance, irradiance and light

- A separate radiance for every direction for every surface point
- Color at $(\mathrm{x}, \mathrm{y})=I(x, y)=L_{r}\left(\mathbf{x}, \Omega_{r}\right)$

What should BRDF be?

$$
L_{r}=\rho\left(\theta_{i}, \theta_{r}\right) L_{i} \cos \theta_{i}
$$

- Special case 1: Perfect mirror
- $\rho\left(\theta_{i}, \theta_{r}\right)=0$ unless $\theta_{i}=\theta_{r}$
- Special case 2: Matte surface
- $\rho\left(\theta_{i}, \theta_{r}\right)=\rho_{0}$ (constant)

Special case 1: Perfect mirror

- $\rho\left(\theta_{i}, \theta_{r}\right)=0$ unless $\theta_{i}=\theta_{r}$
- Also called "Specular surfaces"
- Reflects light in a single, particular direction

Special case 2: Matte surface

- $\rho\left(\theta_{i}, \theta_{r}\right)=\rho_{0}$
- Also called "Lambertian surfaces"
- Reflected light is independent of viewing direction

Lambertian surfaces

- For a lambertian surface:

$$
\begin{aligned}
& L_{r}=\rho L_{i} \cos \theta_{i} \\
& \Rightarrow L_{r}=\rho L_{i} \mathbf{L} \cdot \mathbf{N}
\end{aligned}
$$

- L is direction to light source $\left(=\Omega_{i}\right.$)
- L_{i} is intensity of light
- ρ is called albedo

- Think of this as paint
- High albedo: white colored surface
- Low albedo: black surface
- Varies from point to point

Lambertian surfaces

- Assume the light is directional: all rays from light source are parallel
- Equivalent to a light source infinitely far away
- All pixels get light from the same direction L and of the same intensity $L_{\text {i }}$

Lambertian surfaces

Lambertian surfaces

Lambertian surfaces

1

Reconstructing Lambertian surfaces

$$
I(x, y)=\rho(x, y) L_{i} \mathbf{L} \cdot \mathbf{N}(x, y)
$$

- Equation is a constraint on albedo and normals
- Can we solve for albedo and normals?

Recovery from multiple images

$$
I(x, y)=\rho(x, y) L_{i} \mathbf{L} \cdot \mathbf{N}(x, y)
$$

- Represents an equation in the albedo and normals
- Multiple images give constraints on albedo and normals
- Solve for albedo and normals
- Called Photometric Stereo

Multiple Images: Photometric Stereo

Photometric stereo - the math

$$
I(x, y)=\rho(x, y) L_{i} \mathbf{L} \cdot \mathbf{N}(x, y)
$$

- Consider single pixel
- Assume $L_{i}=1$

$$
\begin{aligned}
& I=\rho \mathbf{L} \cdot \mathbf{N} \\
& I=\rho \mathbf{N}^{T} \mathbf{L}
\end{aligned}
$$

- Write $\mathbf{G}=\rho \mathbf{N}$
- G is a 3 -vector
- Norm of $\mathbf{G}=\rho$
- Direction of $\mathbf{G}=\mathbf{N}$

Photometric stereo - the math

- Consider single pixel
- Assume $L_{i}=1$

$$
I=\rho \mathbf{N}^{T} \mathbf{L}
$$

- Write $\mathbf{G}=\rho \mathbf{N}$
- G is a 3 -vector
- Norm of G = ρ
- Direction of $\mathbf{G}=\mathbf{N}$

$$
I=\mathbf{G}^{T} \mathbf{L}=\mathbf{L}^{T} \mathbf{G}
$$

Photometric stereo - the math

$$
I=\mathbf{L}^{T} \mathbf{G}
$$

- Multiple images with different light sources but same viewing direction?

$$
\begin{aligned}
I_{1} & =\mathbf{L}_{1}^{T} \mathbf{G} \\
I_{2} & =\mathbf{L}_{2}^{T} \mathbf{G} \\
\vdots & \\
I_{k} & =\mathbf{L}_{k}^{T} \mathbf{G}
\end{aligned}
$$

Photometric stereo - the math

$$
\begin{aligned}
I_{1} & =\mathbf{L}_{1}^{T} \mathbf{G} \\
I_{2} & =\mathbf{L}_{2}^{T} \mathbf{G}
\end{aligned}
$$

$$
I_{k}=\mathbf{L}_{k}^{T} \mathbf{G}
$$

- Assume lighting directions are known
- Each is a linear equation in G
- Stack everything up into a massive linear system of equations!

Photometric stereo - the math

Photometric stereo - the math

$$
\begin{aligned}
\mathbf{k} \times 1 & =\mathbf{L}_{k \times 3}^{T} \underset{3 \times 1}{\mathbf{G}} \\
\mathbf{G} & =\mathbf{L}^{-T} \mathbf{I}
\end{aligned}
$$

- What is the minimum value of k to allow recovery of G ?
- How do we recover G if the problem is overconstrained?

Photometric stereo - the math

- How do we recover G if the problem is overconstrained?
- More than 3 lights: more than 3 images
- Least squares

$$
\min _{\mathbf{G}}\left\|\mathbf{I}-\mathbf{L}^{T} \mathbf{G}\right\|^{2}
$$

- Solved using normal equations

$$
\mathbf{G}=\left(\mathbf{L L}^{T}\right)^{-1} \mathbf{L I}
$$

Normal equations

$$
\left\|\mathbf{I}-\mathbf{L}^{T} \mathbf{G}\right\|^{2}=\mathbf{I}^{T} \mathbf{I}+\mathbf{G}^{T} \mathbf{L} \mathbf{L}^{T} \mathbf{G}-2 \mathbf{G}^{T} \mathbf{L} \mathbf{I}
$$

- Take derivative with respect to \mathbf{G} and set to 0

$$
\begin{array}{r}
2 \mathbf{L} \mathbf{L}^{T} \mathbf{G}-2 \mathbf{L I}=0 \\
\Rightarrow \mathbf{G}=\left(\mathbf{L L}^{T}\right)^{-1} \mathbf{L} \mathbf{I}
\end{array}
$$

Estimating normals and albedo from G

- Recall that $\quad \mathbf{G}=\rho \mathbf{N}$

$$
\begin{aligned}
& \|\mathbf{G}\|=\rho \\
& \frac{\mathbf{G}}{\|\mathbf{G}\|}=\mathbf{N}
\end{aligned}
$$

Multiple pixels

- We've looked at a single pixel till now
- How do we handle multiple pixels?
- Essentially independent equations!

Multiple pixels: matrix form

- Note that all pixels share the same set of lights

$$
\begin{aligned}
\mathbf{I}^{(1)} & =\mathbf{L}^{T} \mathbf{G}^{(1)} \\
\mathbf{I}^{(2)} & =\mathbf{L}^{T} \mathbf{G}^{(2)} \\
\vdots & \\
\mathbf{I}^{(n)} & =\mathbf{L}^{T} \mathbf{G}^{(n)}
\end{aligned}
$$

Multiple pixels: matrix form

- Can stack these into columns of a matrix

$$
\begin{aligned}
& \mathbf{I}^{(1)}=\mathbf{L}^{T} \mathbf{G}^{(1)} \\
& \mathbf{I}^{(2)}=\mathbf{L}^{T} \mathbf{G}^{(2)}
\end{aligned}
$$

$$
\mathbf{I}^{(n)}=\mathbf{L}^{T} \mathbf{G}^{(n)}
$$

$$
\left[\begin{array}{llll}
\mathbf{I}^{(1)} & \mathbf{I}^{(2)} & \cdots & \mathbf{I}^{(n)}
\end{array}\right]=\mathbf{L}^{T}\left[\begin{array}{llll}
\mathbf{G}^{(1)} & \mathbf{G}^{(2)} & \cdots & \mathbf{G}^{(n)}
\end{array}\right]
$$

$$
\mathbf{I}=\mathbf{L}^{T} \mathbf{G}
$$

Multiple pixels: matrix form

$$
\mathbf{I}=\mathbf{L}^{T} \mathbf{G}
$$

Estimating depth from normals

- So we got surface normals, can we get depth?
- Yes, given boundary conditions
- Normals provide information about the derivative

Brief detour: Orthographic projection

- Perspective projection
- $x=\frac{X}{Z}, y=\frac{Y}{Z}$
- If all points have similar depth
- $Z \approx Z_{0}$
- $x \approx \frac{X}{Z_{0}}, y \approx \frac{Y}{Z_{0}}$
- $x \approx c X, y \approx c Y$
- A scaled version of orthographic projection
- $x=X, y=Y$

Perspective

Depth Map from Normal Map

- We now have a surface normal, but how do we get depth?

Assume a smooth surface

$$
\begin{aligned}
V_{1} & =\left(c(x+1), c y, Z_{x+1, y}\right)-\left(c x, c y, Z_{x, y}\right) \\
& =\left(c, 0, Z_{x+1, y}-Z_{x, y}\right) \\
0 & =N \cdot V_{1} \\
& =\left(n_{x}, n_{y}, n_{z}\right) \cdot\left(c, 0, Z_{x+1, y}-Z_{x, y}\right) \\
& =c n_{x}+n_{z}\left(Z_{x+1, y}-Z_{x, y}\right)
\end{aligned}
$$

Get a similar equation for $\mathbf{V}_{\mathbf{2}}$

- Each normal gives us two linear constraints on z
- compute z values by solving a matrix equation

Determining Light Directions

- Trick: Place a mirror ball in the scene.

- The location of the highlight is determined by the light source direction.
- Can relate the direction of highlight mathematically to direction of light source

Optional: Determining Light Directions
 - For a perfect mirror, the light is reflected across N :

$$
I_{e}= \begin{cases}I_{i} & \text { if } \mathbf{V}=\mathbf{R} \\ 0 & \text { otherwise }\end{cases}
$$

Optional: Determining Light Directions

$$
\begin{aligned}
\longrightarrow & =(N \cdot R) N \\
\cdots--- & =R-(N \cdot R) N \\
\longrightarrow- & =R-(N \cdot R) N \\
& =R-2(R-N \cdot R) N
\end{aligned}
$$

So the light source direction $=2(N \cdot R) N-R$ is given by:

$$
L=2(N \cdot R) N-R
$$

Optional: Determining Light Directions

- Assume orthographic projection
- Viewing direction $\mathrm{R}=[0,0,-1]$
- Normal?

$$
Z_{h} \text { and } Z_{c} \text { are unknown, but: }
$$

$$
\begin{aligned}
& \left(x_{h}-x_{c}\right)^{2}+\left(y_{h}-y_{c}\right)^{2} \\
& +\left(Z_{h}-Z_{c}\right)^{2}=r^{2}
\end{aligned}
$$

$\left(Z_{h}-Z_{c}\right)$ can be computed
$\left(x_{h}-x_{c}, y_{h}-y_{c}, Z_{h}-Z_{c}\right)$ is the normal

$$
L=2(N \cdot R) N-R
$$

Photometric Stereo

What results can you get?

Results

from Athos Georghiades

Results

