
Other approaches
to obtaining 3D structure

Active stereo with structured light

• Project �structured� light patterns onto the object
• simplifies the correspondence problem
• Allows us to use only one camera

camera

projector

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured Light and
Multi-pass Dynamic Programming. 3DPVT 2002

http://grail.cs.washington.edu/projects/moscan/

Active stereo with structured light

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured Light
and Multi-pass Dynamic Programming. 3DPVT 2002

http://grail.cs.washington.edu/projects/moscan/

Microsoft Kinect

Light and geometry

Till now: 3D structure from multiple cameras

• Problems:
• requires calibrated cameras
• requires correspondence

• Other cues to 3D structure?

Key Idea: use feature motion to understand shape

(x,y)

What does 3D structure mean?

• We have been talking about the depth of a pixel

Pinhole

(X,Y,Z)

(x,y)

What does 3D structure mean?

• But we can also look at the orientation of the surface at
each pixel: surface normal

Pinhole

(NX,NY,NZ)

Not enough by itself to reveal absolute locations, but gives enough of a clue to object shape

Shading is a cue to surface orientation

Facing the sun, hence
bright

Facing orthogonal to
the sun, hence dark

Facing away from the
sun, hence dark –
“shadow”

Shading is a cue to surface orientation

• Till now we have looked at
where a pixel comes from
• Now: what is its color?
• Depends on:
• Color and amount of lighting
• Orientation of surface relative to

lighting
• Paint on the surface

How does light interact with the scene?

• Light is a bunch of photons
• Photons are energy packets
• Light starts from the light source, is reflected / absorbed by surfaces

and lands on the camera
• Two key questions:
• What property of light does a camera pixel record? Radiance
• How does the radiance of a pixel depend on lighting, shape and paint?

Radiance

• How do we measure the “strength” of a beam of light?
• Idea: put a sensor and see how much energy it gets

A larger sensor captures
more energy

If the sensor is slanted it
gets less energy

Radiance
• How do we measure the “strength” of a beam of

light?
• Radiance: power in a particular direction per unit

area when surface is orthogonal to direction

A larger sensor captures
more energy

If the sensor is slanted it
gets less energy

Radiance

• Pixels measure radiance

This pixel
Measures radiance

along this ray

Where do the rays come from?

• Rays from the light source
“reflect” off a surface and
reach camera
• Surface gets some energy

from the light source:
irradiance
• Depending on paint, some

of this energy is reflected
back

Irradiance

• What is the energy received by a surface from a light source?
• Depends on the area of the surface and its orientation relative to light

!
A

Acos !
All disks
receive
same
energy

Irradiance

• Power received by a surface patch
• of area A
• from a beam of radiance L
• coming at angle != LAcos!

!
A

Acos !

Irradiance
• Power received by a surface patch of unit area

• from a beam of radiance L
• coming at angle != Lcos!

• Called Irradiance
• Irradiance = Radiance of ray* cos!
• Total power = Irradiance * Area

!
A

Acos !

Light rays interacting with a surface
• Light of radiance !" comes from light source at an incoming direction
#" : incoming power = !"cos #"
• Surface absorbs some of this energy and reflects a fraction in the

outgoing direction #'
• Fraction might depend on incoming light and outgoing light direction
• Fraction = ((#", #')

• Outgoing radiance !' = fraction * incoming power

#" #'

• N is surface normal
• L is direction of light, making #"

with normal
• V is viewing direction, making #'

with normal

Light rays interacting with a surface

!" !#

• N is surface normal
• L is direction of light, making !"

with normal
• V is viewing direction, making !#

with normal

$# = & !", !# $" cos !"Output radiance
along V

Bi-directional reflectance function (BRDF)

Incoming
irradiance along
L

Light rays interacting with a surface

• In reality:
• World is 3D, so incoming and outgoing directions are not angles !", !$ but

general 3D directions Ω", Ω$ (represented by ”solid angles”)
• Light might come from all directions with different radiance: need to integrate

• Final equation:
&$(Ω$) = *

+,
- Ω", Ω$ &"cos !"1Ω"Outgoing radiance

at a point in
direction Ω$

Sum / Integral over
incoming directions Ω"

BRDF

Incoming irradiance in
direction Ω"

(x,y)

Radiance, irradiance and light

• A separate radiance for every direction for every surface point
• Color at (x,y) = ! ", $ = &'(), Ω')

Pinhole

N

Ω'

Ω,
x

What should BRDF be?

• Special case 1: Perfect mirror
• ! "#, "% = 0 unless "# = "%

• Special case 2: Matte surface
• ! "#, "% = !' (constant)

"# "%
(% = ! "#, "% (# cos "#

Special case 1: Perfect mirror

• ! "#, "% = 0 unless "# = "%
• Also called “Specular surfaces”
• Reflects light in a single, particular direction

Special case 2: Matte surface

• ! "#, "% = !&
• Also called “Lambertian surfaces”
• Reflected light is independent of viewing direction

Lambertian surfaces

• For a lambertian surface:

• L is direction to light source (= Ω#)
• %# is intensity of light
• & is called albedo
• Think of this as paint
• High albedo: white colored surface
• Low albedo: black surface
• Varies from point to point

Lr = ⇢Li cos ✓i

) Lr = ⇢LiL ·N
'# '(

Lambertian surfaces

• Assume the light is directional: all
rays from light source are parallel
• Equivalent to a light source

infinitely far away

• All pixels get light from the same
direction L and of the same
intensity Li

!" !#

Lambertian surfaces

I(x, y) = ⇢(x, y)LiL ·N(x, y)

Reflectance image:
albedo of surface
corresponding to

each pixel

Shading image: dot
product between
light and normal
direction at each

pixel

Intrinsic Image
Decomposition

Lambertian surfaces

Far

Near

Shading image of Z and Lshape / depth

Reflectance

illumination

Lambertian reflectance
I = R� S(Z,L)

Lambertian surfaces

Reconstructing Lambertian surfaces

• Equation is a constraint on albedo and normals
• Can we solve for albedo and normals?

I(x, y) = ⇢(x, y)LiL ·N(x, y)

Recovery from multiple images

• Represents an equation in the albedo and normals
• Multiple images give constraints on albedo and normals
• Solve for albedo and normals
• Called Photometric Stereo

I(x, y) = ⇢(x, y)LiL ·N(x, y)

Image credit: Wikipedia

Multiple Images: Photometric Stereo

N

L1
L2

V

L3

Photometric stereo - the math

• Consider single pixel
• Assume !" = 1

• Write
• G	is a 3-vector
• Norm of G = '
• Direction of G = N

I(x, y) = ⇢(x, y)LiL ·N(x, y)

I = ⇢L ·N

I = ⇢NTL

G = ⇢N

Photometric stereo - the math

• Consider single pixel
• Assume !" = 1

• Write
• G	is a 3-vector
• Norm of G = '
• Direction of G = N

I = ⇢NTL
G = ⇢N

I = GTL = LTG

Photometric stereo - the math

• Multiple images with different light sources but same viewing
direction?

I = LTG

I1 = LT
1 G

I2 = LT
2 G

...

Ik = LT
kG

Photometric stereo - the math

• Assume lighting directions are known
• Each is a linear equation in G
• Stack everything up into a massive linear system of equations!

I1 = LT
1 G

I2 = LT
2 G

...

Ik = LT
kG

Photometric stereo - the math

I1 = LT
1 G

I2 = LT
2 G

...

Ik = LT
kG

I = LTG

k x 1 vector
of intensities

k x 3 matrix
of lighting
directions

3x1 vector of
unknowns

Photometric stereo - the math

• What is the minimum value of k to allow recovery
of G?
• How do we recover G if the problem is

overconstrained?

I = LTG
k x 1 k x 3 3 x 1

G = L�T I

Photometric stereo - the math

• How do we recover G if the problem is overconstrained?
• More than 3 lights: more than 3 images

• Least squares

• Solved using normal equations

min
G

kI� LTGk2

G = (LLT)�1LI

Normal equations

• Take derivative with respect to G and set to 0

kI� LTGk2 = IT I+GTLLTG� 2GTLI

2LLTG� 2LI = 0

) G = (LLT)�1LI

Estimating normals and albedo from G

• Recall that G = ⇢N

kGk = ⇢

G

kGk = N

Multiple pixels

• We’ve looked at a single pixel till now
• How do we handle multiple pixels?
• Essentially independent equations!

Multiple pixels: matrix form

• Note that all pixels share the same set of lights

I(1) = LTG(1)

I(2) = LTG(2)

...

I(n) = LTG(n)

Multiple pixels: matrix form

• Can stack these into columns of a matrix

⇥
I(1) I(2) · · · I(n)

⇤
= LT

⇥
G(1) G(2) · · · G(n)

⇤

I(1) = LTG(1)

I(2) = LTG(2)

...

I(n) = LTG(n)

I = LTG

Multiple pixels: matrix form

I = LTG

I LT
G

=#l
ig
ht
s

#pixels #pixels

#l
ig
ht
s

3

3

Estimating depth from normals

• So we got surface normals, can we get depth?
• Yes, given boundary conditions
• Normals provide information about the derivative

Brief detour: Orthographic projection

• Perspective projection
• ! = #

$, & =
'
$

• If all points have similar depth
• (≈ (*
• ! ≈ #

$+
, & ≈ '

$+
• ! ≈ ,-, & ≈ ,.

• A scaled version of orthographic
projection
• ! = -, & = .

Perspective

Scaled
orthographic

Depth Map from Normal Map

• We now have a surface normal, but how do we get depth?

49

V1
V2

N

Assume a smooth surface

Get a similar equation for V2
• Each normal gives us two linear constraints on z
• compute z values by solving a matrix equation

(cx, cy, Zx,y)

(c(x+ 1), cy, Zx+1,y)

(cx, c(y + 1), Zx,y+1)

V1 = (c(x+ 1), cy, Zx+1,y)� (cx, cy, Zx,y)

= (c, 0, Zx+1,y � Zx,y)

0 = N · V1

= (nx, ny, nz) · (c, 0, Zx+1,y � Zx,y)

= cnx + nz(Zx+1,y � Zx,y)

Determining Light Directions

50

• Trick: Place a mirror ball in the scene.

• The location of the highlight is determined by the
light source direction.
• Can relate the direction of highlight mathematically to

direction of light source

• For a perfect mirror, the light is reflected across N:
Optional: Determining Light Directions

51

= - 2

So the light source direction
is given by:

Optional: Determining Light Directions

52

L

N

R||||
= " ⋅ $ "
= $ − " ⋅ $ "
= $ − " ⋅ $ "

= $ − 2 $ − " ⋅ $ "
= 2 " ⋅ $ " − $

Optional: Determining Light Directions
• Assume orthographic projection
• Viewing direction R = [0,0,-1]
• Normal?

Z=1

("#, %#)

("', %')

("#, %#, (#)

("', %', (')

(# and (' are unknown, but:

"# − "' * + %# − %' *

+ (# − (' * = -*

(# − (' can be computed

"# − "', %# − %', (# − (' is
the normal

Photometric Stereo

Input
(1 of 12)

Normals (RGB
colormap)

Normals (vectors) Shaded 3D
rendering

Textured 3D
rendering

What results can you get?

Results

55

from Athos Georghiades

Results

Input
(1 of 12)

Normals (RGB
colormap)

Normals (vectors) Shaded 3D
rendering

Textured 3D
rendering

