Other approaches to obtaining 3D structure

Active stereo with structured light

- Project "structured" light patterns onto the object
 - simplifies the correspondence problem
 - Allows us to use only one camera

L. Zhang, B. Curless, and S. M. Seitz. <u>Rapid Shape Acquisition Using Color Structured Light and</u> <u>Multi-pass Dynamic Programming.</u> *3DPVT* 2002

Active stereo with structured light

L. Zhang, B. Curless, and S. M. Seitz. <u>Rapid Shape Acquisition Using Color Structured Light</u> and <u>Multi-pass Dynamic Programming</u>. *3DPVT* 2002

Microsoft Kinect

Light and geometry

Till now: 3D structure from multiple cameras

- Problems:
 - requires calibrated cameras
 - requires correspondence
- Other cues to 3D structure?

What does 3D structure mean?

• We have been talking about the depth of a pixel

What does 3D structure mean?

• But we can also look at the orientation of the surface at each pixel: *surface normal*

Not enough by itself to reveal absolute locations, but gives enough of a clue to object shape

Shading is a cue to surface orientation

Facing away from the sun, hence dark – "shadow"

Facing orthogonal to the sun, hence dark

Facing the sun, hence bright

Shading is a cue to surface orientation

- Till now we have looked at where a pixel comes from
- Now: what is its color?
- Depends on:
 - Color and amount of lighting
 - Orientation of surface relative to lighting
 - Paint on the surface

How does light interact with the scene?

- Light is a bunch of photons
- Photons are energy packets
- Light starts from the light source, is reflected / absorbed by surfaces and lands on the camera
- Two key questions:
 - What property of light does a camera pixel record? *Radiance*
 - How does the radiance of a pixel depend on lighting, shape and paint?

Radiance

- How do we measure the "strength" of a beam of light?
- Idea: put a sensor and see how much energy it gets

Radiance

- How do we measure the "strength" of a beam of light?
- Radiance: power *in a particular direction* per unit area when surface is orthogonal to direction

Radiance

• Pixels measure radiance

Where do the rays come from?

- Rays from the light source "reflect" off a surface and reach camera
- Surface gets some energy from the light source: *irradiance*
- Depending on paint, some of this energy is reflected back

Irradiance

- What is the energy received by a surface from a light source?
- Depends on the area of the surface and its orientation relative to light

Irradiance

- Power received by a surface patch
 - of area A
 - from a beam of radiance L
 - coming at angle θ = LAcos θ

Irradiance

- Power received by a surface patch of unit area
 - from a beam of radiance L
 - coming at angle θ = Lcos θ
- Called Irradiance
- Irradiance = Radiance of ray* $\cos\theta$
- Total power = Irradiance * Area

Light rays interacting with a surface

- Light of radiance L_i comes from light source at an incoming direction θ_i : incoming power = $L_i \cos \theta_i$
- Surface absorbs some of this energy and reflects a fraction in the outgoing direction θ_r
 - Fraction might depend on incoming light and outgoing light direction
 - Fraction = $\rho(\theta_i, \theta_r)$

• Outgoing radiance L_r = fraction * incoming power

- **N** is surface normal
- L is direction of light, making θ_i with normal
- **V** is viewing direction, making θ_r with normal

Light rays interacting with a surface

- N is surface normal
- L is direction of light, making θ_i with normal
- V is viewing direction, making θ_r with normal

Light rays interacting with a surface

- In reality:
 - World is 3D, so incoming and outgoing directions are not angles θ_i , θ_r but general 3D directions Ω_i , Ω_r (represented by "solid angles")
 - Light might come from all directions with different radiance: need to integrate

Radiance, irradiance and light

- A separate radiance for every direction for every surface point
- Color at $(x,y) = I(x,y) = L_r(\mathbf{x},\Omega_r)$

What should BRDF be?

$$L_r = \rho(\theta_i, \theta_r) L_i \cos \theta_i$$

- Special case 1: Perfect mirror
 - $\rho(\theta_i, \theta_r) = 0$ unless $\theta_i = \theta_r$
- Special case 2: Matte surface
 - $\rho(\theta_i, \theta_r) = \rho_0$ (constant)

Special case 1: Perfect mirror

- $\rho(\theta_i, \theta_r) = 0$ unless $\theta_i = \theta_r$
- Also called "Specular surfaces"
- Reflects light in a single, particular direction

Special case 2: Matte surface

- $\rho(\theta_i, \theta_r) = \rho_0$
- Also called "Lambertian surfaces"
- Reflected light is independent of viewing direction

• For a lambertian surface:

$$L_r = \rho L_i \cos \theta_i$$

$$\Rightarrow L_r = \rho L_i \mathbf{L} \cdot \mathbf{N}$$

- L is direction to light source (= Ω_i)
- L_i is intensity of light
- ρ is called *albedo*
 - Think of this as paint
 - High albedo: white colored surface
 - Low albedo: black surface
 - Varies from point to point

- Assume the light is directional: all rays from light source are parallel
 - Equivalent to a light source infinitely far away
- All pixels get light from the same direction L and of the same intensity L_i

Far

Reconstructing Lambertian surfaces

$$I(x,y) = \rho(x,y)L_i\mathbf{L}\cdot\mathbf{N}(x,y)$$

- Equation is a constraint on albedo and normals
- Can we solve for albedo and normals?

Recovery from multiple images

$$I(x,y) = \rho(x,y)L_i\mathbf{L}\cdot\mathbf{N}(x,y)$$

- Represents an equation in the albedo and normals
- Multiple images give constraints on albedo and normals
- Solve for albedo and normals
- Called Photometric Stereo

Multiple Images: Photometric Stereo

$$I(x,y) = \rho(x,y)L_i\mathbf{L}\cdot\mathbf{N}(x,y)$$

• Consider single pixel

• Assume
$$L_i = 1$$

 $I =
ho \mathbf{L} \cdot \mathbf{N}$
 $I =
ho \mathbf{N}^T \mathbf{L}$

- Write $\mathbf{G}=\rho\mathbf{N}$
- G is a 3-vector
 - Norm of **G** = ρ
 - Direction of **G** = **N**

• Consider single pixel

• Assume
$$L_i = 1$$

 $I = \rho \mathbf{N}^T \mathbf{L}$

- Write $\mathbf{G}=\rho\mathbf{N}$
- G is a 3-vector
 - Norm of **G** = ρ
 - Direction of **G** = **N**

$$I = \mathbf{G}^T \mathbf{L} = \mathbf{L}^T \mathbf{G}$$

Photometric stereo - the math $I = \mathbf{L}^T \mathbf{G}$

Multiple images with different light sources but same viewing direction?

$$I_1 = \mathbf{L}_1^T \mathbf{G}$$
$$I_2 = \mathbf{L}_2^T \mathbf{G}$$
$$\vdots$$
$$I_k = \mathbf{L}_k^T \mathbf{G}$$

Photometric stereo - the math $I_1 = \mathbf{L}_1^T \mathbf{G}$ $I_2 = \mathbf{L}_2^T \mathbf{G}$ \vdots $I_k = \mathbf{L}_k^T \mathbf{G}$

- Assume lighting directions are known
- Each is a linear equation in G
- Stack everything up into a massive linear system of equations!

$$\mathbf{I} = \mathbf{L}^T \mathbf{G}_{3\times 1}$$
$$\mathbf{G} = \mathbf{L}^{-T} \mathbf{I}$$

- What is the minimum value of k to allow recovery of G?
- How do we recover G if the problem is overconstrained?

- How do we recover G if the problem is overconstrained?
 - More than 3 lights: more than 3 images
- Least squares

$$\min_{\mathbf{G}} \|\mathbf{I} - \mathbf{L}^T \mathbf{G}\|^2$$

• Solved using normal equations

$$\mathbf{G} = (\mathbf{L}\mathbf{L}^T)^{-1}\mathbf{L}\mathbf{I}$$

Normal equations

$\|\mathbf{I} - \mathbf{L}^T \mathbf{G}\|^2 = \mathbf{I}^T \mathbf{I} + \mathbf{G}^T \mathbf{L} \mathbf{L}^T \mathbf{G} - 2\mathbf{G}^T \mathbf{L} \mathbf{I}$

• Take derivative with respect to **G** and set to 0

$$2\mathbf{L}\mathbf{L}^T\mathbf{G} - 2\mathbf{L}\mathbf{I} = 0$$
$$\Rightarrow \mathbf{G} = (\mathbf{L}\mathbf{L}^T)^{-1}\mathbf{L}\mathbf{I}$$

Estimating normals and albedo from G

• Recall that $\mathbf{G} = \rho \mathbf{N}$

 $\|\mathbf{G}\| = \rho$ $\frac{\mathbf{G}}{\|\mathbf{G}\|} = \mathbf{N}$

Multiple pixels

- We've looked at a single pixel till now
- How do we handle multiple pixels?
- Essentially independent equations!

Multiple pixels: matrix form

• Note that all pixels share the same set of lights

 $\mathbf{I}^{(1)} = \mathbf{L}^T \mathbf{G}^{(1)}$ $\mathbf{I}^{(2)} = \mathbf{L}^T \mathbf{G}^{(2)}$ \vdots $\mathbf{I}^{(n)} = \mathbf{L}^T \mathbf{G}^{(n)}$

Multiple pixels: matrix form

• Can stack these into *columns* of a matrix

 $\mathbf{I}^{(1)} = \mathbf{L}^T \mathbf{G}^{(1)}$ $\mathbf{I}^{(2)} = \mathbf{L}^T \mathbf{G}^{(2)}$

 $\mathbf{I}^{(n)} = \mathbf{L}^T \mathbf{G}^{(n)}$

$$\begin{bmatrix} \mathbf{I}^{(1)} & \mathbf{I}^{(2)} & \cdots & \mathbf{I}^{(n)} \end{bmatrix} = \mathbf{L}^T \begin{bmatrix} \mathbf{G}^{(1)} & \mathbf{G}^{(2)} & \cdots & \mathbf{G}^{(n)} \end{bmatrix}$$
$$\mathbf{I} = \mathbf{L}^T \mathbf{G}$$

Multiple pixels: matrix form

$\mathbf{I} = \mathbf{L}^T \mathbf{G}$

Estimating depth from normals

- So we got surface normals, can we get depth?
- Yes, given *boundary conditions*
- Normals provide information about the derivative

Brief detour: Orthographic projection

• Perspective projection

•
$$x = \frac{x}{z}, y = \frac{Y}{z}$$

• If all points have similar depth

•
$$Z \approx Z_0$$

• $x \approx \frac{X}{Z_0}$, $y \approx \frac{Y}{Z_0}$
• $x \approx cX$, $y \approx cY$

- A scaled version of orthographic projection
 - x = X, y = Y

Perspective

Scaled orthographic

Depth Map from Normal Map

• We now have a surface normal, but how do we get depth?

Determining Light Directions • Trick: Place a mirror ball in the scene.

- The location of the highlight is determined by the light source direction.
- Can relate the direction of highlight mathematically to direction of light source

Optional: Determining Light Directions • For a perfect mirror, the light is reflected across N:

Optional: Determining Light Directions

$$L = 2(N \cdot R)N - R$$

Optional: Determining Light Directions

- Assume orthographic projection
- Viewing direction R = [0,0,-1]
- Normal?

 Z_h and Z_c are unknown, but:

- $(x_h x_c)^2 + (y_h y_c)^2$ $+ (Z_h - Z_c)^2 = r^2$
- $(Z_h Z_c)$ can be computed

 $(x_h - x_c, y_h - y_c, Z_h - Z_c)$ is the normal

$$L = 2(N \cdot R)N - R$$

Photometric Stereo

What results can you get?

Results

from Athos Georghiades

Results

