# Epipolar geometry

### Binocular stereo

• Special case: cameras are parallel to each other and translated along X axis



#### Stereo head



#### Kinect / depth cameras



### Perspective projection in rectified cameras

 Without loss of generality, assume origin is at pinhole of 1<sup>st</sup> camera



# Perspective projection in rectified cameras

- X coordinate differs by  $t_x/Z$
- That is, difference in X coordinate is *inversely proportional to depth*
- Difference in X coordinate is called *disparity*
- Translation between cameras (tx) is called *baseline*
- disparity = baseline / depth

# The NCC cost volume

- Consider M x N image
- Suppose there are D possible disparities.
- For every pixel, D possible scores
- Can be written as an M x N x D array
- To get disparity, take max along 3<sup>rd</sup> axis

# Computing the NCC volume

- 1. For every pixel (x, y)
  - 1. For every disparity d
    - 1. Get normalized patch from image 1 at (x, y)
    - 2. Get normalized patch from image 2 at (x + d, y)
    - 3. Compute NCC

# Computing the NCC volume

#### 1. For every disparity d

- 1. For every pixel (x, y)
  - 1. Get normalized patch from image 1 at (x, y)
  - 2. Get normalized patch from image 2 at (x + d, y)
  - 3. Compute NCC

Assume all pixels lie at same disparity d (i.e., lie on same plane) and compute cost for each

#### Plane sweep stereo

### Perspective projection in rectified cameras



- For rectified cameras, correspondence problem is easier
- Only requires searching along a particular row.



# Epipolar constraint



• Reduces 2D search problem to search along a particular line: *epipolar line* 

# Epipolar constraint

True in general!

- Given pixel (x,y) in one image, corresponding pixel in the other image must lie on a line
- Line function of (x,y) and parameters of camera
- These lines are called *epipolar line*



# Epipolar geometry

Epipolar geometry - why?

• For a single camera, pixel in image plane must correspond to point somewhere along a ray



# Epipolar geometry

- When viewed in second image, this ray looks like a line: *epipolar line*
- The epipolar line must pass through image of the first camera in the second image  *epipole*



# **Epipolar geometry**

Given an image point in one view, where is the corresponding point in the other view?



- A point in one view "generates" an epipolar line in the other view
- The corresponding point lies on this line

# **Epipolar line**



#### Epipolar constraint

• Reduces correspondence problem to 1D search along an epipolar line

# Epipolar lines



# Epipolar lines



# Epipolar lines



# Epipolar geometry continued

Epipolar geometry is a consequence of the coplanarity of the camera centres and scene point



The camera centres, corresponding points and scene point lie in a single plane, known as the **epipolar plane** 



• The epipolar line  $\mathbf{l}'$  is the image of the ray through  $\mathbf{x}$ 

 $\bullet$  The epipole e is the point of intersection of the line joining the camera centres with the image plane

- this line is the **baseline** for a stereo rig, and
- the translation vector for a moving camera
- The epipole is the image of the centre of the other camera: e = PC', e' = P'C



As the position of the 3D point  $\mathbf{X}$  varies, the epipolar planes "rotate" about the baseline. This family of planes is known as an **epipolar pencil** (a pencil is a one parameter family).

All epipolar lines intersect at the epipole.



As the position of the 3D point  $\mathbf{X}$  varies, the epipolar planes "rotate" about the baseline. This family of planes is known as an epipolar pencil (a pencil is a one parameter family).

All epipolar lines intersect at the epipole.

- Assume intrinsic parameters K are identity
- Assume world coordinate system is centered at 1<sup>st</sup> camera pinhole with Z along viewing direction

$$\vec{\mathbf{x}}_{img}^{(1)} \equiv K_1 \begin{bmatrix} R_1 & \mathbf{t}_1 \end{bmatrix} \vec{\mathbf{x}}_w$$
$$\vec{\mathbf{x}}_{img}^{(2)} \equiv K_2 \begin{bmatrix} R_2 & \mathbf{t}_2 \end{bmatrix} \vec{\mathbf{x}}_w$$

- Assume intrinsic parameters K are identity
- Assume world coordinate system is centered at 1<sup>st</sup> camera pinhole with Z along viewing direction

$$\vec{\mathbf{x}}_{img}^{(1)} \equiv \begin{bmatrix} I & 0 \end{bmatrix} \vec{\mathbf{x}}_w$$
$$\vec{\mathbf{x}}_{img}^{(2)} \equiv \begin{bmatrix} R & \mathbf{t} \end{bmatrix} \vec{\mathbf{x}}_w$$

- Assume intrinsic parameters K are identity
- Assume world coordinate system is centered at 1<sup>st</sup> camera pinhole with Z along viewing direction

$$\vec{\mathbf{x}}_{img}^{(1)} \equiv \begin{bmatrix} I & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x}_w \\ 1 \end{bmatrix} = \mathbf{x}_w$$
$$\vec{\mathbf{x}}_{img}^{(2)} \equiv \begin{bmatrix} R & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{x}_w \\ 1 \end{bmatrix} = R\mathbf{x}_w + \mathbf{t}$$

- Assume intrinsic parameters K are identity
- Assume world coordinate system is centered at 1<sup>st</sup> camera pinhole with Z along viewing direction

$$ec{\mathbf{x}}_{img}^{(1)} \equiv \mathbf{x}_w$$
 $ec{\mathbf{x}}_{img}^{(2)} \equiv R\mathbf{x}_w + \mathbf{t}$ 

- Assume intrinsic parameters K are identity
- Assume world coordinate system is centered at 1<sup>st</sup> camera pinhole with Z along viewing direction

$$\lambda_1 \vec{\mathbf{x}}_{img}^{(1)} = \mathbf{x}_w$$

$$\lambda_2 \vec{\mathbf{x}}_{img}^{(2)} = R\mathbf{x}_w + \mathbf{t}$$



$$\vec{\mathbf{x}}_{img}^{(2)} \cdot \mathbf{t} \times R\vec{\mathbf{x}}_{img}^{(1)} = 0$$

- Can we write this as matrix vector operations?
- Cross product can be written as a matrix

$$[\mathbf{t}]_{\times} = \begin{bmatrix} 0 & -t_z & t_y \\ t_z & 0 & -t_x \\ -t_y & t_x & 0 \end{bmatrix}$$
$$[\mathbf{t}]_{\times} \mathbf{a} = \mathbf{t} \times \mathbf{a}$$

Epipolar geometry - the math  $\vec{\mathbf{x}}_{imq}^{(2)} \cdot [\mathbf{t}]_{\times} R \vec{\mathbf{x}}_{img}^{(1)} = 0$ 

- Can we write this as matrix vector operations?
- Dot product can be written as a vector-vector times

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^T \mathbf{b}$$

Epipolar geometry - the math  $\vec{\mathbf{x}}_{imq}^{(2)} \cdot [\mathbf{t}]_{\times} R \vec{\mathbf{x}}_{img}^{(1)} = 0$ 

- Can we write this as matrix vector operations?
- Dot product can be written as a vector-vector times

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^T \mathbf{b}$$

$$\vec{\mathbf{x}}_{img}^{(2)T}[\mathbf{t}] \times R \vec{\mathbf{x}}_{img}^{(1)} = 0$$
$$\vec{\mathbf{x}}_{img}^{(2)T} E \vec{\mathbf{x}}_{img}^{(1)} = 0$$



Epipolar constraint and epipolar lines

$$\vec{\mathbf{x}}_{img}^{(2)T} E \vec{\mathbf{x}}_{img}^{(1)} = 0$$

- Consider a known, fixed pixel in the first image
- What constraint does this place on the corresponding pixel?

• 
$$\vec{\mathbf{x}}_{img}^{(2)T}\mathbf{l} = 0$$
 where  $\mathbf{l} = E\vec{\mathbf{x}}_{img}^{(1)}$ 

• What kind of equation is this?

Epipolar constraint and epipolar lines

$$\vec{\mathbf{x}}_{img}^{(2)T} E \vec{\mathbf{x}}_{img}^{(1)} = 0$$

• Consider a known, fixed pixel in the first image

• 
$$\vec{\mathbf{x}}_{img}^{(2)T}\mathbf{l} = 0$$
 where  $\mathbf{l} = E\vec{\mathbf{x}}_{img}^{(1)}$   
 $\vec{\mathbf{x}}_{img}^{(2)T}\mathbf{l} = 0$   
 $\Rightarrow \begin{bmatrix} x_2 & y_2 & 1 \end{bmatrix} \begin{bmatrix} l_x \\ l_y \\ l_z \end{bmatrix} = 0$   
 $\Rightarrow l_x x_2 + l_y y_2 + l_z = 0$ 

# Epipolar constraint: putting it all together

- If p is a pixel in first image and q is the corresponding pixel in the second image, then:
   q<sup>T</sup>Ep = 0
- $E = [t]_X R$
- For fixed p, q must satisfy:
   q<sup>T</sup>I = 0, where I = Ep
- For fixed q, p must satisfy:
   I<sup>T</sup>p = 0 where I<sup>T</sup> = q<sup>T</sup>E, or I = E<sup>t</sup>q
- These are epipolar lines!



# Essential matrix and epipoles

•  $E = [t]_X R$ 

$$\vec{\mathbf{c}}_{2} = \mathbf{t}$$
  
$$\vec{\mathbf{c}}_{2}^{T} E = \mathbf{t}^{T} E = \mathbf{t}^{T} [\mathbf{t}]_{\times} R = 0$$
  
$$\vec{\mathbf{c}}_{2}^{T} E \mathbf{p} = 0 \quad \forall \mathbf{p}$$

- Ep is an epipolar line in 2<sup>nd</sup> image
- All epipolar lines in second image pass through c<sub>2</sub>
- $c_2$  is epipole in  $2^{nd}$  image

## Essential matrix and epipoles

• 
$$\mathbf{E} = [\mathbf{t}]_{\mathsf{X}} \mathbf{R}$$
  
 $\vec{\mathbf{c}}_1 = \mathbf{R}^T \mathbf{t}$   
 $E\vec{\mathbf{c}}_1 = [\mathbf{t}]_{\times} RR^T \mathbf{t} = [\mathbf{t}]_{\times} \mathbf{t} = 0$   
 $\mathbf{q}^T E\vec{\mathbf{c}}_1 = 0 \quad \forall \mathbf{q}$ 

- $E^T q$  is an epipolar line in  $1^{st}$  image
- All epipolar lines in first image pass through c<sub>1</sub>
- c<sub>1</sub> is the epipole in 1<sup>st</sup> image

- We assumed that intrinsic parameters K are identity
- What if they are not?

$$\vec{\mathbf{x}}_{img}^{(1)} \equiv K_1 \begin{bmatrix} R_1 & \mathbf{t}_1 \end{bmatrix} \vec{\mathbf{x}}_w$$
$$\vec{\mathbf{x}}_{img}^{(2)} \equiv K_2 \begin{bmatrix} R_2 & \mathbf{t}_2 \end{bmatrix} \vec{\mathbf{x}}_w$$

$$\vec{\mathbf{x}}_{img}^{(1)} \equiv K_1 \begin{bmatrix} I & 0 \end{bmatrix} \vec{\mathbf{x}}_w$$
$$\vec{\mathbf{x}}_{img}^{(2)} \equiv K_2 \begin{bmatrix} R & \mathbf{t} \end{bmatrix} \vec{\mathbf{x}}_w$$

$$\lambda_1 \vec{\mathbf{x}}_{img}^{(1)} = K_1 \begin{bmatrix} I & \mathbf{0} \end{bmatrix} \vec{\mathbf{x}}_w$$
$$\lambda_2 \vec{\mathbf{x}}_{img}^{(2)} = K_2 \begin{bmatrix} R & \mathbf{t} \end{bmatrix} \vec{\mathbf{x}}_w$$

$$\lambda_1 \vec{\mathbf{x}}_{img}^{(1)} = K_1 \begin{bmatrix} I & \mathbf{0} \end{bmatrix} \vec{\mathbf{x}}_w$$
$$= K_1 \begin{bmatrix} I & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}_w \\ 1 \end{bmatrix}$$
$$= K_1 \mathbf{x}_w$$

$$\Rightarrow \lambda_1 K_1^{-1} \vec{\mathbf{x}}_{img}^{(1)} = \mathbf{x}_w$$

$$\lambda_{2}\vec{\mathbf{x}}_{img}^{(2)} = K_{2} \begin{bmatrix} R & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{w} \\ 1 \end{bmatrix}$$
$$= K_{2}R\mathbf{x}_{w} + K_{2}\mathbf{t}$$
$$= \lambda_{1}K_{2}RK_{1}^{-1}\vec{\mathbf{x}}_{img}^{(1)} + K_{2}\mathbf{t}$$
$$\Rightarrow \lambda_{2}K_{2}^{-1}\vec{\mathbf{x}}_{img}^{(2)} = \lambda_{1}RK_{1}^{-1}\vec{\mathbf{x}}_{img}^{(1)} + \mathbf{t}$$
$$\Rightarrow \lambda_{2}[\mathbf{t}]_{\times}K_{2}^{-1}\vec{\mathbf{x}}_{img}^{(2)} = \lambda_{1}[\mathbf{t}]_{\times}RK_{1}^{-1}\vec{\mathbf{x}}_{img}^{(1)}$$
$$\Rightarrow 0 = \vec{\mathbf{x}}_{img}^{(2)}K_{2}^{-T}[\mathbf{t}]_{\times}RK_{1}^{-1}\vec{\mathbf{x}}_{img}^{(1)}$$

$$\Rightarrow 0 = \vec{\mathbf{x}}_{img}^{(2)} K_2^{-T} [\mathbf{t}]_{\times} R K_1^{-1} \vec{\mathbf{x}}_{img}^{(1)}$$
$$\Rightarrow 0 = \vec{\mathbf{x}}_{img}^{(2)} F \vec{\mathbf{x}}_{img}^{(1)}$$
Fundamental matrix

#### Fundamental matrix result

# $\mathbf{q}^T \mathbf{F} \mathbf{p} = 0$

(Longuet-Higgins, 1981)

#### Properties of the Fundamental Matrix

- $\mathbf{F}\mathbf{p}$ s the epipolar line associated with  $\mathbf{p}$
- $\mathbf{F}^T \mathbf{q}^{\mathsf{s}}$  the epipolar line associated with



q

#### Properties of the Fundamental Matrix

- ${f Fp}$  is the epipolar line associated with p
- $\mathbf{F}^T \mathbf{q}$  is the epipolar line associated with  $\, \mathbf{q}$
- $\mathbf{F}\mathbf{e}_1 = \mathbf{0}$  and  $\mathbf{F}^T\mathbf{e}_2 = \mathbf{0}$
- All epipolar lines contain epipole



#### Properties of the Fundamental Matrix

- ${\bf F} p\,$  is the epipolar line associated with  $\,p\,$
- $\mathbf{F}^T \mathbf{q}$  is the epipolar line associated with  $\, \mathbf{q}$
- $\mathbf{Fe}_1 = \mathbf{0}$  and  $\mathbf{F}^T \mathbf{e}_2 = \mathbf{0}$ •  $\mathbf{F}$  is rank 2

# Why is F rank 2?

- F is a 3 x 3 matrix
- But there is a vector  $c_1$  and  $c_2$  such that  $Fc_1 = 0$  and  $F^Tc_2 = 0$

**Fundamental matrix song** 

# Estimating F



- If we don't know K<sub>1</sub>, K<sub>2</sub>, R, or t, can we estimate F for two images?
- Yes, given enough correspondences

# Estimating F – 8-point algorithm

• The fundamental matrix F is defined by

$$\mathbf{x'}^{\mathrm{T}}\mathbf{F}\mathbf{x}=\mathbf{0}$$

for any pair of matches x and x' in two images.

• Let  $\mathbf{x} = (u, v, 1)^{\mathsf{T}}$  and  $\mathbf{x}' = (u', v', 1)^{\mathsf{T}}$ ,  $\mathbf{F} = \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix}$ 

each match gives a linear equation

 $uu'f_{11} + vu'f_{12} + u'f_{13} + uv'f_{21} + vv'f_{22} + v'f_{23} + uf_{31} + vf_{32} + f_{33} = 0$ 



• In reality, instead of solving  $\mathbf{A}\mathbf{f} = 0$ , we seek  $\mathbf{f}$  to minimize  $\|\mathbf{A}\mathbf{f}\|$ , least eigenvector of  $\mathbf{A}^{\mathrm{T}}\mathbf{A}$ .

# 8-point algorithm – Problem?

- F should have rank 2
- To enforce that **F** is of rank 2, F is replaced by F' that minimizes  $\|\mathbf{F} \mathbf{F}'\|$  subject to the rank constraint.

• This is achieved by SVD. Let  $\mathbf{F} = \mathbf{U}\Sigma\mathbf{V}$ , where

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix}, \text{ let } \Sigma' = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

then  $\mathbf{F'} = \mathbf{U} \boldsymbol{\Sigma'} \mathbf{V}^{\mathrm{T}}$  is the solution.

# Recovering camera parameters from F / E

• Can we recover R and t between the cameras from F?

$$F = K_2^{-T}[\mathbf{t}]_{\times} R K_1^{-1}$$

- No: K<sub>1</sub> and K<sub>2</sub> are in principle arbitrary matrices
- What if we knew  $K_1$  and  $K_2$  to be identity?

$$E = [\mathbf{t}]_{\times} R$$

## Recovering camera parameters from E

$$E = [\mathbf{t}]_{\times} R$$
$$\mathbf{t}^T E = \mathbf{t}^T [\mathbf{t}]_{\times} R = 0$$
$$E^T \mathbf{t} = 0$$

- **t** is a solution to  $E^T \mathbf{x} = \mathbf{0}$
- Can't distinguish between t and ct for constant scalar c
- How do we recover R?

#### Recovering camera parameters from E

 $E = [\mathbf{t}]_{\times} R$ 

- We know E and **t**
- Consider taking SVD of E and  $[\mathbf{t}]_X$

$$\begin{split} [\mathbf{t}]_{\times} &= U \Sigma V^{T} \\ & E = U' \Sigma' V'^{T} \\ U' \Sigma' V'^{T} &= E = [\mathbf{t}]_{\times} R = U \Sigma V^{T} R \\ & U' \Sigma' V'^{T} = U \Sigma V^{T} R \\ & V'^{T} = V^{T} R \end{split}$$

### Recovering camera parameters from E

$$E = [\mathbf{t}]_{\times} R$$
$$\mathbf{t}^T E = \mathbf{t}^T [\mathbf{t}]_{\times} R = 0$$
$$E^T \mathbf{t} = 0$$

- **t** is a solution to  $E^T \mathbf{x} = \mathbf{0}$
- Can't distinguish between t and ct for constant scalar c

# 8-point algorithm

- Pros: it is linear, easy to implement and fast
- Cons: susceptible to noise
- Degenerate: if points are on same plane

- Normalized 8-point algorithm: Hartley
  - Position origin at centroid of image points
  - Rescale coordinates so that center to farthest point is sqrt (2)

# Structure-from-motion

- Given 2 (or more) images from *unknown* cameras and with 3D world *unknown* 
  - Can we recover both the cameras and the 3D world structure?
- Step 1: Get correspondences
- Step 2: Estimate Essential matrix, get R and t (assuming K known)
- Step 3: Use calibrated cameras + correspondence to get 3D locations of points