## Binocular stereo

## Binocular stereo

- General case: cameras can be arbitrary locations and orientations



## Binocular stereo

- Special case: cameras are parallel to each other and translated along $X$ axis



## Stereo with rectified cameras

- Special case: cameras are parallel to each other and translated along $X$ axis


Stereo head


Kinect / depth cameras


## Stereo with "rectified cameras"



## Perspective projection in rectified cameras

- Without loss of generality, assume origin is at pinhole of $1^{\text {st }}$ camera

$$
\begin{aligned}
& \overrightarrow{\mathbf{x}}_{i m g}^{(1)} \equiv\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
& \overrightarrow{\mathbf{x}}_{i m g}^{(2)} \equiv\left[\begin{array}{ll}
I & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
& \mathbf{t}=\left[\begin{array}{c}
t_{x} \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

## Perspective projection in rectified cameras

- Without loss of generality, assume origin is at pinhole of $1^{\text {st }}$ camera

$$
\begin{aligned}
& \overrightarrow{\mathbf{x}}_{i m g}^{(1)} \equiv\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
& \overrightarrow{\mathbf{x}}_{i m g}^{(2)} \equiv\left[\begin{array}{ll}
I & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
& \mathbf{t}=\left[\begin{array}{c}
t_{x} \\
0 \\
0
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}=\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right]
\end{aligned}
$$

## Perspective projection in rectified cameras

- Without loss of generality, assume origin is at pinhole of $1^{\text {st }}$ camera

$$
\overrightarrow{\mathbf{x}}_{i m g}^{(1)} \equiv\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right]=\mathbf{x}_{w}=\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]
$$

$$
\overrightarrow{\mathbf{x}}_{i m g}^{(2)} \equiv\left[\begin{array}{ll}
I & \mathbf{t}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right]=\mathbf{x}_{w}+\mathbf{t}=\left[\begin{array}{c}
X+t_{x} \\
Y \\
Z
\end{array}\right]
$$

## Perspective projection in rectified cameras

- Without loss of generality, assume origin is at pinhole of $1^{\text {st }}$ camera

$$
\begin{aligned}
\overrightarrow{\mathbf{x}}_{i m g}^{(1)} & \equiv\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right] \\
\overrightarrow{\mathbf{x}}_{i m g}^{(2)} & \equiv\left[\begin{array}{c}
X+t_{x} \\
Y \\
Z
\end{array}\right]
\end{aligned}
$$

## Perspective projection in rectified cameras

- Without loss of generality, assume origin is at pinhole of $1^{\text {st }}$ camera

$$
\begin{aligned}
& {\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right] \equiv\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]} \\
& {\left[\begin{array}{c}
x_{2} \\
y_{2} \\
1
\end{array}\right] \equiv\left[\begin{array}{c}
X+t_{x} \\
Y \\
Z
\end{array}\right]}
\end{aligned}
$$

## Perspective projection in rectified cameras

- Without loss of generality, assume origin is at pinhole of $1^{\text {st }}$ camera

$$
\begin{aligned}
& {\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right] \equiv\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]} \\
& {\left[\begin{array}{c}
x_{2} \\
y_{2} \\
1
\end{array}\right] \equiv\left[\begin{array}{c}
X+t_{x} \\
Y \\
Z
\end{array}\right]}
\end{aligned}
$$

## Perspective projection in rectified cameras

- Without loss of generality, assume origin is at pinhole of $1^{\text {st }}$ camera

$$
\begin{aligned}
& {\left[\begin{array}{c}
\lambda x_{1} \\
\lambda y_{1} \\
\lambda
\end{array}\right]=\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]} \\
& {\left[\begin{array}{c}
\lambda x_{2} \\
\lambda y_{2} \\
\lambda
\end{array}\right]=\left[\begin{array}{c}
X+t_{x} \\
Y \\
Z
\end{array}\right]}
\end{aligned}
$$

## Perspective projection in rectified cameras

- Without loss of generality, assume origin is at pinhole of $1^{\text {st }}$ camera

$$
\begin{array}{cl}
\mathrm{X} \text { coordinate differs by } \mathrm{t}_{\mathrm{x}} / Z \\
x_{1}=\frac{X}{Z} & x_{2}=\frac{X+t_{x}}{Z} \\
y_{1}=\frac{Y}{Z} & y_{2}=\frac{Y}{Z}
\end{array}
$$

Y coordinate is the same!

## Perspective projection in rectified cameras

- X coordinate differs by $\mathrm{t}_{\mathrm{x}} / \mathrm{Z}$
- That is, difference in X coordinate is inversely proportional to depth
- Difference in X coordinate is called disparity
- Translation between cameras ( tx ) is called baseline
- disparity = baseline $/$ depth


## The disparity image

- For pixel ( $x, y$ ) in one image, only need to know disparity to get correspondence
- Create an image with color at ( $\mathrm{x}, \mathrm{y}$ ) = disparity

right image

disparity


## Perspective projection in rectified cameras



- For rectified cameras, correspondence problem is easier
- Only requires searching along a particular row.


## NCC - Normalized Cross Correlation

- Lighting and color change pixel intensities
- Example: increase brightness / contrast
- $I^{\prime}=\alpha I+\beta$
- Subtract patch mean: invariance to $\beta$
- Divide by norm of vector: invariance to $\alpha$

- similarity $=x^{\prime \prime} \cdot y^{\prime \prime}$


## Cross-correlation of neighborhood


regions $A, B$, write as vectors $\mathbf{a}, \mathbf{b}$
translate so that mean is zero
$\mathrm{a} \rightarrow \mathrm{a}-\langle\mathbf{a}\rangle, \mathrm{b} \rightarrow \mathrm{b}-\langle\mathbf{b}\rangle$
cross correlation $=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} \quad$ Invariant to $I \rightarrow \alpha I+\beta$

left image band
right image band
$\uparrow \begin{aligned} & \text { cross } \\ & \text { correlation }\end{aligned}$


## The NCC cost volume

- Consider M x N image
- Suppose there are D possible disparities.
- For every pixel, D possible scores
- Can be written as an M x N x D array
- To get disparity, take max along $3^{\text {rd }}$ axis


## Computing the NCC volume

1. For every pixel ( $x, y$ )
2. For every disparity d
3. Get normalized patch from image 1 at $(x, y)$
4. Get normalized patch from image 2 at $(x+d, y)$
5. Compute NCC

## Computing the NCC volume

## 1. For every disparity $d$

1. For every pixel $(x, y)$
2. Get normalized patch from image 1 at $(x, y)$
3. Get normalized patch from image 2 at $(x+d, y)$
4. Compute NCC

Assume all pixels lie at same disparity d (i.e., lie on same plane) and compute cost for each

## Plane sweep stereo



## Perspective projection in rectified cameras

- Without loss of generality, assume origin is at pinhole of $1^{\text {st }}$ camera

$$
\begin{array}{cl}
\mathrm{X} \text { coordinate differs by } \mathrm{t}_{\mathrm{x}} / Z \\
x_{1}=\frac{X}{Z} & x_{2}=\frac{X+t_{x}}{Z} \\
y_{1}=\frac{Y}{Z} & y_{2}=\frac{Y}{Z}
\end{array}
$$

Y coordinate is the same!

## Perspective projection in rectified cameras

- disparity $=\mathrm{t}_{\mathrm{x}} / \mathrm{Z}$
- If $\mathrm{t}_{\mathrm{x}}$ is known, disparity gives Z
- Otherwise, disparity gives $Z$ in units of $t_{x}$
- Small-baseline, near depth = large-baseline, far depth


## Perspective projection in rectified cameras



- For rectified cameras, correspondence problem is easier
- Only requires searching along a particular row.


## Rectifying cameras

- Given two images from two cameras with known P, can we rectify them?



## Rectifying cameras

- Can we rotate / translate cameras?



## Rotating cameras

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}
$$

- Assume K is identity
- Assume coordinate system at camera pinhole

$$
\begin{aligned}
\overrightarrow{\mathbf{x}}_{i m g} & \equiv\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
& \equiv\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right] \\
& \equiv \mathbf{x}_{w}
\end{aligned}
$$

## Rotating cameras

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}
$$

- Assume K is identity
- Assume coordinate system at camera pinhole

$$
\begin{aligned}
\overrightarrow{\mathbf{x}}_{i m g} & \equiv\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
& \equiv\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right] \\
& \equiv \mathbf{x}_{w}
\end{aligned}
$$

## Rotating cameras

$$
\begin{aligned}
& \overrightarrow{\mathbf{x}}_{i m g} \equiv\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right] \\
& \overrightarrow{\mathbf{x}}_{i m g} \equiv \mathbf{x}_{w}
\end{aligned}
$$

- What happens if the camera is rotated?

$$
\begin{aligned}
\overrightarrow{\mathbf{x}}_{i m g}^{\prime} & \equiv\left[\begin{array}{ll}
R & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right] \\
& \equiv R \mathbf{x}_{w} \\
& \equiv R \overrightarrow{\mathbf{x}}_{i m g}
\end{aligned}
$$

## Rotating cameras

- What happens if the camera is rotated?

- No need to know the 3D structure


## Rotating cameras



Rectifying cameras


Rectifying cameras


$$
\square_{\diamond}
$$

Rectifying cameras



