
Binocular stereo

Binocular stereo

• General case: cameras can be arbitrary locations and orientations

Binocular stereo

• Special case: cameras are parallel to each other and translated along
X axis

Z axis

X axis

Stereo with rectified cameras

• Special case: cameras are parallel to each other and translated along
X axis

Z axis

X axis

Stereo head

Kinect / depth cameras

Stereo with “rectified cameras”

Perspective projection in rectified cameras

• Without loss of generality, assume origin is at
pinhole of 1st camera

t =

2

4
tx
0
0

3

5

~x(1)
img ⌘

⇥
I 0

⇤
~xw

~x(2)
img ⌘

⇥
I t

⇤
~xw

Perspective projection in rectified cameras

• Without loss of generality, assume origin is at
pinhole of 1st camera

t =

2

4
tx
0
0

3

5~xw =

2

664

X
Y
Z
1

3

775 =


xw

1

�

~x(1)
img ⌘

⇥
I 0

⇤
~xw

~x(2)
img ⌘

⇥
I t

⇤
~xw

Perspective projection in rectified cameras

• Without loss of generality, assume origin is at
pinhole of 1st camera

~x(1)
img ⌘

⇥
I 0

⇤ xw

1

�
= xw =

2

4
X
Y
Z

3

5

~x(2)
img ⌘

⇥
I t

⇤ xw

1

�
= xw + t =

2

4
X + tx

Y
Z

3

5

Perspective projection in rectified cameras

• Without loss of generality, assume origin is at
pinhole of 1st camera

~x(2)
img ⌘

2

4
X + tx

Y
Z

3

5

~x(1)
img ⌘

2

4
X
Y
Z

3

5

Perspective projection in rectified cameras

• Without loss of generality, assume origin is at
pinhole of 1st camera2

4
x1

y1
1

3

5 ⌘

2

4
X
Y
Z

3

5

2

4
x2

y2
1

3

5 ⌘

2

4
X + tx

Y
Z

3

5

Perspective projection in rectified cameras

• Without loss of generality, assume origin is at
pinhole of 1st camera2

4
x1

y1
1

3

5 ⌘

2

4
X
Y
Z

3

5

2

4
x2

y2
1

3

5 ⌘

2

4
X + tx

Y
Z

3

5

Perspective projection in rectified cameras

• Without loss of generality, assume origin is at
pinhole of 1st camera

2

4
�x2

�y2
�

3

5 =

2

4
X + tx

Y
Z

3

5

2

4
�x1

�y1
�

3

5 =

2

4
X
Y
Z

3

5

Perspective projection in rectified cameras

• Without loss of generality, assume origin is at
pinhole of 1st camera

x1 =
X

Z
x2 =

X + tx
Z

y2 =
Y

Z
y1 =

Y

Z

Y coordinate is the same!

X coordinate differs by tx/Z

Perspective projection in rectified cameras

• X coordinate differs by tx/Z
• That is, difference in X coordinate is inversely proportional to depth
• Difference in X coordinate is called disparity
• Translation between cameras (tx) is called baseline

• disparity = baseline / depth

The disparity image

• For pixel (x,y) in one image, only need to know disparity to get
correspondence
• Create an image with color at (x,y) = disparity

right image

left image

disparity

Perspective projection in rectified cameras

• For rectified cameras, correspondence problem is
easier
• Only requires searching along a particular row.

NCC - Normalized Cross Correlation

• Lighting and color change pixel intensities
• Example: increase brightness / contrast
• !" = $! + &
• Subtract patch mean: invariance to &
• Divide by norm of vector: invariance to $
• '′ = '− < ' >
• '′′ = ,"

||,"||
• similarity = '"" ⋅ /′′

Why not SIFT?

Cross-correlation of neighborhood

translate so that mean is zero

left image band

right image band

cross
correlation

1

0

0.5

x

left image band

right image band

cross
correlation

1

0

x

0.5

target region

The NCC cost volume

• Consider M x N image
• Suppose there are D possible disparities.
• For every pixel, D possible scores
• Can be written as an M x N x D array
• To get disparity, take max along 3rd axis

Computing the NCC volume

1. For every pixel (x, y)
1. For every disparity d

1. Get normalized patch from image 1 at (x, y)
2. Get normalized patch from image 2 at (x + d, y)
3. Compute NCC

Computing the NCC volume

1. For every disparity d
1. For every pixel (x, y)

1. Get normalized patch from image 1 at (x, y)
2. Get normalized patch from image 2 at (x + d, y)
3. Compute NCC

Assume all pixels lie at same disparity d (i.e., lie on same plane) and
compute cost for each

Plane sweep stereo

NCC volume Disparity

Perspective projection in rectified cameras

• Without loss of generality, assume origin is at
pinhole of 1st camera

x1 =
X

Z
x2 =

X + tx
Z

y2 =
Y

Z
y1 =

Y

Z

Y coordinate is the same!

X coordinate differs by tx/Z

Perspective projection in rectified cameras

• disparity = tx/Z
• If tx is known, disparity gives Z
• Otherwise, disparity gives Z in units of tx
• Small-baseline, near depth = large-baseline, far depth

Perspective projection in rectified cameras

• For rectified cameras, correspondence problem is
easier
• Only requires searching along a particular row.

Rectifying cameras

• Given two images from two cameras with known P, can we
rectify them?
• Can we create new images corresponding to a rectified setup?

Rectifying cameras

• Can we rotate / translate cameras?
• Do we need to know the 3D structure of the world to do

this?

Rotating cameras

• Assume K is identity
• Assume coordinate system at camera pinhole

~ximg ⌘ K
⇥
R t

⇤
~xw

~ximg ⌘
⇥
I 0

⇤
~xw

⌘
⇥
I 0

⇤ xw

1

�

⌘xw

Rotating cameras

• Assume K is identity
• Assume coordinate system at camera pinhole

~ximg ⌘ K
⇥
R t

⇤
~xw

~ximg ⌘
⇥
I 0

⇤
~xw

⌘
⇥
I 0

⇤ xw

1

�

⌘xw

Rotating cameras

~ximg ⌘ xw

• What happens if the camera is rotated?

~ximg ⌘
⇥
I 0

⇤ xw

1

�

~x0
img ⌘

⇥
R 0

⇤ xw

1

�

⌘ Rxw

⌘ R~ximg

Rotating cameras
• What happens if the camera is rotated?

• No need to know the 3D structure

~x0
img ⌘ R~ximg

Rotation matrix

Homogenous
coordinates of
original pixel

Homogenous
coordinates of
mapped pixel

Rotating cameras

Rectifying cameras

Rectifying cameras

Rectifying cameras

Rectifying cameras

