
RANSAC Recap

RANSAC - Setup

• Given
• A dataset ! = #$, #&, … , #(

• Example 1: Line fitting: { *$, +$, … , *,, +, }
• Example 2: Homography fitting: { .$, /$, .&, /& , … , .(, /(}

• A set of parameters 0 that need to be fitted
• Line fitting: 0 = (2, 3)
• Homography estimation 0 = 5, ||ℎ|| = 1

• A cost function 9 #, 0
• Line fitting: 9 *, + , 2, 3 = ||+ − 2* + 3 ||&
• Homography estimation 9 ., /⃗ , 5 = = 5 (Reprojection error)

• A minimum number needed k
• Line fitting: 2
• Homography estimation: 4

RANSAC - Setup

• Given
• A dataset ! = #$, #&, … , #(
• A set of parameters) that need to be fitted
• A cost function * #,)
• k
•)∗ = min/ ∑1 *(#1,))?
• Problem: outliers

RANSAC - Algorithm

• Given: ! = #$, #&, … , #(,)(+, #),k
• +-./0 ← 2,!3453.6 ← 2
• For i = 1, …, S
• Sample k points
• Minimize C for these k points to get +789
• Compute the set of inliers: !789 = {# ∈ !:) +789, # < >}
• If size of !789is more than size of !3453.6

• +-./0 ← +789
• !3453.6 ← !789

• Minimize + over !3453.6

RANSAC: how many iterations do we need?
• p = inlier fraction
• k = minimum number of data points
• S = iter

• ! = (1 − 1 − &' ()

Binocular Stereo

Binocular stereo

• General case: cameras can be arbitrary locations and orientations
• If we know where cameras are, we can shoot rays from corresponding

pixels and intersect

Binocular stereo : Triangulation

• Suppose we have two cameras
• Calibrated: parameters known

• And a pair of corresponding pixels
• Find 3D location of point!

Triangulation

• Suppose we have two cameras
• Calibrated: parameters known

• And a pair of corresponding pixels
• Find 3D location of point!

(x1,y1)
(x2,y2)

P (1) P (2)

Triangulation

~x(2)
img ⌘ P (2)~xw

~x(1)
img ⌘ P (1)~xw

2

4
x1

y1
1

3

5

2

4
x2

y2
1

3

5

2

664

X
Y
Z
1

3

775

Triangulation

~x(1)
img ⌘ P (1)~xw

�x1 = P (1)
11 X + P (1)

12 Y + P (1)
13 Z + P (1)

14

�y1 = P (1)
21 X + P (1)

22 Y + P (1)
23 Z + P (1)

24

� = P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34

(P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34)x1 = P (1)
11 X + P (1)

12 Y + P (1)
13 Z + P (1)

14

X(P (1)
31 x1 � P (1)

11) + Y (P (1)
32 x1 � P (1)

12) + Z(P (1)
33 x1 � P (1)

13) + (P (1)
34 x1 � P (1)

14) = 0

Triangulation

• 1 image gives 2 equations
• Need 2 images!
• Solve linear equations to get 3D point location

~x(1)
img ⌘ P (1)~xw

X(P (1)
31 x1 � P (1)

11) + Y (P (1)
32 x1 � P (1)

12) + Z(P (1)
33 x1 � P (1)

13) + (P (1)
34 x1 � P (1)

14) = 0

X(P (1)
31 y1 � P (1)

21) + Y (P (1)
32 y1 � P (1)

22) + Z(P (1)
33 y1 � P (1)

23) + (P (1)
34 y1 � P (1)

24) = 0

Linear vs non-linear optimization

�x1 = P (1)
11 X + P (1)

12 Y + P (1)
13 Z + P (1)

14

�y1 = P (1)
21 X + P (1)

22 Y + P (1)
23 Z + P (1)

24

� = P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34

x1 =
P (1)
11 X + P (1)

12 Y + P (1)
13 Z + P (1)

14

P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34

y1 =
P (1)
21 X + P (1)

22 Y + P (1)
23 Z + P (1)

24

P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34

Linear vs non-linear optimization

x1 =
P (1)
11 X + P (1)

12 Y + P (1)
13 Z + P (1)

14

P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34

y1 =
P (1)
21 X + P (1)

22 Y + P (1)
23 Z + P (1)

24

P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34

(x1 �
P (1)
11 X + P (1)

12 Y + P (1)
13 Z + P (1)

14

P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34

)2

+(y1 �
P (1)
21 X + P (1)

22 Y + P (1)
23 Z + P (1)

24

P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34

)2

Reprojection error

Linear vs non-linear optimization

• Reprojection error is the squared error between the
true image coordinates of a point and the projected
coordinates of hypothesized 3D point
• Actual error we care about
• Minimize total sum of reprojection error across all

images
• Non-linear optimization

(x1 �
P (1)
11 X + P (1)

12 Y + P (1)
13 Z + P (1)

14

P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34

)2

+(y1 �
P (1)
21 X + P (1)

22 Y + P (1)
23 Z + P (1)

24

P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34

)2

Reprojection error

Binocular stereo

• General case: cameras can be arbitrary locations and orientations

Binocular stereo

• Special case: cameras are parallel to each other and translated along
X axis

Z axis

X axis

Stereo with rectified cameras

• Special case: cameras are parallel to each other and translated along
X axis

Z axis

X axis

Stereo head

Kinect / depth cameras

Stereo with “rectified cameras”

Perspective projection in rectified cameras

• Without loss of generality, assume origin is at
pinhole of 1st camera

t =

2

4
tx
0
0

3

5

~x(1)
img ⌘

⇥
I 0

⇤
~xw

~x(2)
img ⌘

⇥
I t

⇤
~xw

Perspective projection in rectified cameras

• Without loss of generality, assume origin is at
pinhole of 1st camera

t =

2

4
tx
0
0

3

5~xw =

2

664

X
Y
Z
1

3

775 =


xw

1

�

~x(1)
img ⌘

⇥
I 0

⇤
~xw

~x(2)
img ⌘

⇥
I t

⇤
~xw

Perspective projection in rectified cameras

• Without loss of generality, assume origin is at
pinhole of 1st camera

~x(1)
img ⌘

⇥
I 0

⇤ xw

1

�
= xw =

2

4
X
Y
Z

3

5

~x(2)
img ⌘

⇥
I t

⇤ xw

1

�
= xw + t =

2

4
X + tx

Y
Z

3

5

Perspective projection in rectified cameras

• Without loss of generality, assume origin is at
pinhole of 1st camera

~x(2)
img ⌘

2

4
X + tx

Y
Z

3

5

~x(1)
img ⌘

2

4
X
Y
Z

3

5

Perspective projection in rectified cameras

• Without loss of generality, assume origin is at
pinhole of 1st camera2

4
x1

y1
1

3

5 ⌘

2

4
X
Y
Z

3

5

2

4
x2

y2
1

3

5 ⌘

2

4
X + tx

Y
Z

3

5

Perspective projection in rectified cameras

• Without loss of generality, assume origin is at
pinhole of 1st camera2

4
x1

y1
1

3

5 ⌘

2

4
X
Y
Z

3

5

2

4
x2

y2
1

3

5 ⌘

2

4
X + tx

Y
Z

3

5

Perspective projection in rectified cameras

• Without loss of generality, assume origin is at
pinhole of 1st camera

2

4
�x2

�y2
�

3

5 =

2

4
X + tx

Y
Z

3

5

2

4
�x1

�y1
�

3

5 =

2

4
X
Y
Z

3

5

Perspective projection in rectified cameras

• Without loss of generality, assume origin is at
pinhole of 1st camera

x1 =
X

Z
x2 =

X + tx
Z

y2 =
Y

Z
y1 =

Y

Z

Y coordinate is the same!

X coordinate differs by tx/Z

Perspective projection in rectified cameras

• X coordinate differs by tx/Z
• That is, difference in X coordinate is inversely proportional to depth
• Difference in X coordinate is called disparity
• Translation between cameras (tx) is called baseline

• disparity = baseline / depth

The disparity image

• For pixel (x,y) in one image, only need to know disparity to get
correspondence
• Create an image with color at (x,y) = disparity

right image

left image

disparity

Perspective projection in rectified cameras

• For rectified cameras, correspondence problem is
easier
• Only requires searching along a particular row.

NCC - Normalized Cross Correlation

• Lighting and color change pixel intensities
• Example: increase brightness / contrast
• !" = $! + &
• Subtract patch mean: invariance to &
• Divide by norm of vector: invariance to $
• '′ = '− < ' >
• '′′ = ,"

||,"||
• similarity = '"" ⋅ /′′

Why not SIFT?

Cross-correlation of neighborhood

translate so that mean is zero

left image band

right image band

cross
correlation

1

0

0.5

x

left image band

right image band

cross
correlation

1

0

x

0.5

target region

The NCC cost volume

• Consider M x N image
• Suppose there are D possible disparities.
• For every pixel, D possible scores
• Can be written as an M x N x D array
• To get disparity, take max along 3rd axis

Computing the NCC volume

1. For every pixel (x, y)
1. For every disparity d

1. Get normalized patch from image 1 at (x, y)
2. Get normalized patch from image 2 at (x + d, y)
3. Compute NCC

Computing the NCC volume

1. For every disparity d
1. For every pixel (x, y)

1. Get normalized patch from image 1 at (x, y)
2. Get normalized patch from image 2 at (x + d, y)
3. Compute NCC

Assume all pixels lie at same disparity d (i.e., lie on same plane) and
compute cost for each

Plane sweep stereo

NCC volume Disparity

