RANSAC Recap

RANSAC - Setup

- Given

- A dataset $D=\left\{p_{1}, p_{2}, \ldots, p_{N}\right\}$
- Example 1: Line fitting: $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Example 2: Homography fitting: $\left\{\left(\overrightarrow{Q_{1}}, \overrightarrow{q_{1}}\right),\left(\overrightarrow{Q_{2}}, \overrightarrow{q_{2}}\right), \ldots,\left(\overrightarrow{Q_{N}}, \overrightarrow{q_{N}}\right)\right\}$
- A set of parameters θ that need to be fitted
- Line fitting: $\theta=(m, b)$
- Homography estimation $\theta=H,\|h\|=1$
- A cost function $C(p, \theta)$
- Line fitting: $C((x, y),(m, b))=\|y-(m x+b)\|^{2}$
- Homography estimation $C((\vec{Q}, \vec{q}), H)=E(H)$ (Reprojection error)
- A minimum number needed k
- Line fitting: 2
- Homography estimation: 4

RANSAC - Setup

- Given
- A dataset $D=\left\{p_{1}, p_{2}, \ldots, p_{N}\right\}$
- A set of parameters θ that need to be fitted
- A cost function $C(p, \theta)$
- k
- $\theta^{*}=\min _{\theta} \sum_{i} C\left(p_{i}, \theta\right)$?
- Problem: outliers

RANSAC - Algorithm

- Given: $D=\left\{p_{1}, p_{2}, \ldots, p_{N}\right\}, C(\theta, p), \mathrm{k}$
- $\theta_{\text {best }} \leftarrow \phi, D_{\text {inlier }} \leftarrow \phi$
- For $\mathrm{i}=1, \ldots, \mathrm{~S}$
- Sample k points
- Minimize C for these k points to get $\theta_{h y p}$
- Compute the set of inliers: $D_{\text {hyp }}=\left\{p \in D: C\left(\theta_{\text {hyp }}, p\right)<\delta\right\}$
- If size of $D_{\text {hyp }}$ is more than size of $D_{\text {inlier }}$
- $\theta_{\text {best }} \leftarrow \theta_{\text {hyp }}$
- $D_{\text {inlier }} \leftarrow D_{\text {hyp }}$
- Minimize θ over $D_{\text {inlier }}$

RANSAC: how many iterations do we need?

- $p=$ inlier fraction
- $k=$ minimum number of data points
- $\mathrm{S}=$ iter
- $P=\left(1-\left(1-p^{k}\right)^{S}\right)$

Binocular Stereo

Binocular stereo

- General case: cameras can be arbitrary locations and orientations
- If we know where cameras are, we can shoot rays from corresponding pixels and intersect

Binocular stereo : Triangulation

- Suppose we have two cameras
- Calibrated: parameters known
- And a pair of corresponding pixels
- Find 3D location of point!

Triangulation

- Suppose we have two cameras
- Calibrated: parameters known
- And a pair of corresponding pixels
- Find 3D location of point!

Triangulation

$$
\begin{aligned}
& {\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right] \longrightarrow \overrightarrow{\mathbf{x}}_{i m g}^{(1)} \equiv P^{(1)} \overrightarrow{\mathbf{x}}_{w}} \\
& {\left[\begin{array}{c}
x_{2} \\
y_{2} \\
1
\end{array}\right] \quad\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]}
\end{aligned}
$$

Triangulation

$$
\overrightarrow{\mathbf{x}}_{i m g}^{(1)} \equiv P^{(1)} \overrightarrow{\mathbf{x}}_{w}
$$

$$
\begin{gathered}
\lambda x_{1}=P_{11}^{(1)} X+P_{12}^{(1)} Y+P_{13}^{(1)} Z+P_{14}^{(1)} \\
\lambda y_{1}=P_{21}^{(1)} X+P_{22}^{(1)} Y+P_{23}^{(1)} Z+P_{24}^{(1)} \\
\lambda=P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)} \\
\left(P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)}\right) x_{1}=P_{11}^{(1)} X+P_{12}^{(1)} Y+P_{13}^{(1)} Z+P_{14}^{(1)} \\
X\left(P_{31}^{(1)} x_{1}-P_{11}^{(1)}\right)+Y\left(P_{32}^{(1)} x_{1}-P_{12}^{(1)}\right)+Z\left(P_{33}^{(1)} x_{1}-P_{13}^{(1)}\right)+\left(P_{34}^{(1)} x_{1}-P_{14}^{(1)}\right)=0
\end{gathered}
$$

Triangulation

$$
\begin{gathered}
\overrightarrow{\mathbf{x}}_{i m g}^{(1)} \equiv P^{(1)} \overrightarrow{\mathbf{x}}_{w} \\
X\left(P_{31}^{(1)} x_{1}-P_{11}^{(1)}\right)+Y\left(P_{32}^{(1)} x_{1}-P_{12}^{(1)}\right)+Z\left(P_{33}^{(1)} x_{1}-P_{13}^{(1)}\right)+\left(P_{34}^{(1)} x_{1}-P_{14}^{(1)}\right)=0 \\
X\left(P_{31}^{(1)} y_{1}-P_{21}^{(1)}\right)+Y\left(P_{32}^{(1)} y_{1}-P_{22}^{(1)}\right)+Z\left(P_{33}^{(1)} y_{1}-P_{23}^{(1)}\right)+\left(P_{34}^{(1)} y_{1}-P_{24}^{(1)}\right)=0
\end{gathered}
$$

- 1 image gives 2 equations
- Need 2 images!
- Solve linear equations to get 3D point location

Linear vs non-linear optimization

$$
\begin{aligned}
\lambda x_{1} & =P_{11}^{(1)} X+P_{12}^{(1)} Y+P_{13}^{(1)} Z+P_{14}^{(1)} \\
\lambda y_{1} & =P_{21}^{(1)} X+P_{22}^{(1)} Y+P_{23}^{(1)} Z+P_{24}^{(1)} \\
\lambda & =P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)} \\
x_{1} & =\frac{P_{11}^{(1)} X+P_{12}^{(1)} Y+P_{13}^{(1)} Z+P_{14}^{(1)}}{P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)}} \\
y_{1} & =\frac{P_{21}^{(1)} X+P_{22}^{(1)} Y+P_{23}^{(1)} Z+P_{24}^{(1)}}{P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)}}
\end{aligned}
$$

Linear vs non-linear optimization

$$
\begin{aligned}
& x_{1}=\frac{P_{11}^{(1)} X+P_{12}^{(1)} Y+P_{13}^{(1)} Z+P_{14}^{(1)}}{P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)}} \\
& y_{1}=\frac{P_{21}^{(1)} X+P_{22}^{(1)} Y+P_{23}^{(1)} Z+P_{24}^{(1)}}{P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)}}
\end{aligned}
$$

$$
\begin{array}{|l}
\left(x_{1}-\frac{P_{11}^{(1)} X+P_{12}^{(1)} Y+P_{13}^{(1)} Z+P_{14}^{(1)}}{P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)}}\right)^{2} \\
+\left(y_{1}-\frac{P_{21}^{(1)} X+P_{22}^{(1)} Y+P_{23}^{(1)} Z+P_{24}^{(1)}}{P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)}}\right)^{2}
\end{array}
$$

Linear vs non-linear optimization

$$
\begin{array}{|c}
\hline\left(x_{1}-\frac{P_{11}^{(1)} X+P_{12}^{(1)} Y+P_{13}^{(1)} Z+P_{14}^{(1)}}{\left.P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)}\right)^{2}}\right. \\
+\left(y_{1}-\frac{P_{21}^{(1)} X+P_{22}^{(1)} Y+P_{23}^{(1)} Z+P_{24}^{(1)}}{P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)}}\right)^{2} \\
\hline \text { Reprojection error }
\end{array}
$$

- Reprojection error is the squared error between the true image coordinates of a point and the projected coordinates of hypothesized 3D point
- Actual error we care about
- Minimize total sum of reprojection error across all images
- Non-linear optimization

Binocular stereo

- General case: cameras can be arbitrary locations and orientations

Binocular stereo

- Special case: cameras are parallel to each other and translated along X axis

Stereo with rectified cameras

- Special case: cameras are parallel to each other and translated along X axis

Stereo head

Kinect / depth cameras

Stereo with "rectified cameras"

Perspective projection in rectified cameras

- Without loss of generality, assume origin is at pinhole of $1^{\text {st }}$ camera

$$
\begin{aligned}
& \overrightarrow{\mathbf{x}}_{i m g}^{(1)} \equiv\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
& \overrightarrow{\mathbf{x}}_{i m g}^{(2)} \equiv\left[\begin{array}{ll}
I & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
& \mathbf{t}=\left[\begin{array}{c}
t_{x} \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Perspective projection in rectified cameras

- Without loss of generality, assume origin is at pinhole of $1^{\text {st }}$ camera

$$
\begin{aligned}
& \overrightarrow{\mathbf{x}}_{i m g}^{(1)} \equiv\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
& \overrightarrow{\mathbf{x}}_{i m g}^{(2)} \equiv\left[\begin{array}{ll}
I & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
& \mathbf{t}=\left[\begin{array}{c}
t_{x} \\
0 \\
0
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}=\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right]
\end{aligned}
$$

Perspective projection in rectified cameras

- Without loss of generality, assume origin is at pinhole of $1^{\text {st }}$ camera

$$
\overrightarrow{\mathbf{x}}_{i m g}^{(1)} \equiv\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right]=\mathbf{x}_{w}=\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]
$$

$$
\overrightarrow{\mathbf{x}}_{i m g}^{(2)} \equiv\left[\begin{array}{ll}
I & \mathbf{t}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right]=\mathbf{x}_{w}+\mathbf{t}=\left[\begin{array}{c}
X+t_{x} \\
Y \\
Z
\end{array}\right]
$$

Perspective projection in rectified cameras

- Without loss of generality, assume origin is at pinhole of $1^{\text {st }}$ camera

$$
\begin{aligned}
\overrightarrow{\mathbf{x}}_{i m g}^{(1)} & \equiv\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right] \\
\overrightarrow{\mathbf{x}}_{i m g}^{(2)} & \equiv\left[\begin{array}{c}
X+t_{x} \\
Y \\
Z
\end{array}\right]
\end{aligned}
$$

Perspective projection in rectified cameras

- Without loss of generality, assume origin is at pinhole of $1^{\text {st }}$ camera

$$
\begin{aligned}
& {\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right] \equiv\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]} \\
& {\left[\begin{array}{c}
x_{2} \\
y_{2} \\
1
\end{array}\right] \equiv\left[\begin{array}{c}
X+t_{x} \\
Y \\
Z
\end{array}\right]}
\end{aligned}
$$

Perspective projection in rectified cameras

- Without loss of generality, assume origin is at pinhole of $1^{\text {st }}$ camera

$$
\begin{aligned}
& {\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right] \equiv\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]} \\
& {\left[\begin{array}{c}
x_{2} \\
y_{2} \\
1
\end{array}\right] \equiv\left[\begin{array}{c}
X+t_{x} \\
Y \\
Z
\end{array}\right]}
\end{aligned}
$$

Perspective projection in rectified cameras

- Without loss of generality, assume origin is at pinhole of $1^{\text {st }}$ camera

$$
\begin{aligned}
& {\left[\begin{array}{c}
\lambda x_{1} \\
\lambda y_{1} \\
\lambda
\end{array}\right]=\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]} \\
& {\left[\begin{array}{c}
\lambda x_{2} \\
\lambda y_{2} \\
\lambda
\end{array}\right]=\left[\begin{array}{c}
X+t_{x} \\
Y \\
Z
\end{array}\right]}
\end{aligned}
$$

Perspective projection in rectified cameras

- Without loss of generality, assume origin is at pinhole of $1^{\text {st }}$ camera

$$
\begin{array}{cl}
\mathrm{X} \text { coordinate differs by } \mathrm{t}_{\mathrm{x}} / Z \\
x_{1}=\frac{X}{Z} & x_{2}=\frac{X+t_{x}}{Z} \\
y_{1}=\frac{Y}{Z} & y_{2}=\frac{Y}{Z}
\end{array}
$$

Y coordinate is the same!

Perspective projection in rectified cameras

- X coordinate differs by $\mathrm{t}_{\mathrm{x}} / \mathrm{Z}$
- That is, difference in X coordinate is inversely proportional to depth
- Difference in X coordinate is called disparity
- Translation between cameras (tx) is called baseline
- disparity = baseline $/$ depth

The disparity image

- For pixel (x, y) in one image, only need to know disparity to get correspondence
- Create an image with color at (x, y) = disparity

right image

disparity

Perspective projection in rectified cameras

- For rectified cameras, correspondence problem is easier
- Only requires searching along a particular row.

NCC - Normalized Cross Correlation

- Lighting and color change pixel intensities
- Example: increase brightness / contrast
- $I^{\prime}=\alpha I+\beta$
- Subtract patch mean: invariance to β
- Divide by norm of vector: invariance to α

- similarity $=x^{\prime \prime} \cdot y^{\prime \prime}$

Cross-correlation of neighborhood

regions A, B, write as vectors \mathbf{a}, \mathbf{b}
translate so that mean is zero
$\mathrm{a} \rightarrow \mathrm{a}-\langle\mathbf{a}\rangle, \mathrm{b} \rightarrow \mathrm{b}-\langle\mathbf{b}\rangle$
cross correlation $=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} \quad$ Invariant to $I \rightarrow \alpha I+\beta$

left image band
right image band
$\uparrow \begin{aligned} & \text { cross } \\ & \text { correlation }\end{aligned}$

The NCC cost volume

- Consider M x N image
- Suppose there are D possible disparities.
- For every pixel, D possible scores
- Can be written as an M x N x D array
- To get disparity, take max along $3^{\text {rd }}$ axis

Computing the NCC volume

1. For every pixel (x, y)
2. For every disparity d
3. Get normalized patch from image 1 at (x, y)
4. Get normalized patch from image 2 at $(x+d, y)$
5. Compute NCC

Computing the NCC volume

1. For every disparity d

1. For every pixel (x, y)
2. Get normalized patch from image 1 at (x, y)
3. Get normalized patch from image 2 at $(x+d, y)$
4. Compute NCC

Assume all pixels lie at same disparity d (i.e., lie on same plane) and compute cost for each

Plane sweep stereo

