Calibration and homographies

Final perspective projection

Final perspective projection

$$
\begin{aligned}
& \overrightarrow{\mathbf{x}}_{i m g} \equiv K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
& \\
& \text { Camear parameters }
\end{aligned}
$$

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w}
$$

Camera calibration

- Goal: find the parameters of the camera

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}
$$

- Why?
- Tells you where the camera is relative to the world/particular objects
- Equivalently, tells you where objects are relative to the camera
- Can allow you to "render" new objects into the scene

Camera calibration

Camera calibration

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w}
$$

- Need to estimate P
- How many parameters does P have?
- Size of P:3x4
- But: $\lambda P \overrightarrow{\mathbf{x}}_{w} \equiv P \overrightarrow{\mathbf{x}}_{w}$
- P can only be known upto a scale
- 3*4-1 = 11 parameters

Camera calibration

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w}
$$

- Suppose we know that ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) in the world projects to (x, y) in the image.
- How many equations does this provide?

$$
\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \equiv P\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]_{\substack{\text { Need to ocivert equivalence } \\
\text { intoequalit. }}}
$$

Camera calibration

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w}
$$

- Suppose we know that (X, Y, Z) in the world projects to (x, y) in the image.
- How many equations does this provide?

$$
\begin{gathered}
\text { Note: } \lambda \text { is } \\
\text { unknown }
\end{gathered}\left[\begin{array}{c}
\lambda x \\
\lambda y \\
\lambda
\end{array}\right]=P\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

Camera calibration

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w}
$$

- Suppose we know that ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) in the world projects to (x, y) in the image.
- How many equations does this provide?

$$
\left[\begin{array}{c}
\lambda x \\
\lambda y \\
\lambda
\end{array}\right]=\left[\begin{array}{llll}
P_{11} & P_{12} & P_{13} & P_{14} \\
P_{21} & P_{22} & P_{23} & P_{24} \\
P_{31} & P_{32} & P_{33} & P_{34}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

Camera calibration

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w}
$$

- Suppose we know that ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) in the world projects to (x, y) in the image.
- How many equations does this provide?

$$
\begin{aligned}
\lambda x & =P_{11} X+P_{12} Y+P_{13} Z+P_{14} \\
\lambda y & =P_{21} X+P_{22} Y+P_{23} Z+P_{24} \\
\lambda & =P_{31} X+P_{32} Y+P_{33} Z+P_{34}
\end{aligned}
$$

Camera calibration

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w}
$$

- Suppose we know that (X, Y, Z) in the world projects to (x, y) in the image.
- How many equations does this provide?

$$
\begin{aligned}
& \left(P_{31} X+P_{32} Y+P_{33} Z+P_{34}\right) x=P_{11} X+P_{12} Y+P_{13} Z+P_{14} \\
& \left(P_{31} X+P_{32} Y+P_{33} Z+P_{34}\right) y=P_{21} X+P_{22} Y+P_{23} Z+P_{24}
\end{aligned}
$$

- 2 equations!
- Are the equations linear in the parameters?
- How many equations do we need?

Camera calibration

$$
\begin{gathered}
\left(P_{31} X+P_{32} Y+P_{33} Z+P_{34}\right) x=P_{11} X+P_{12} Y+P_{13} Z+P_{14} \\
X x P_{31}+Y x P_{32}+Z x P_{33}+x P_{34}-X P_{11}-Y P_{12}-Z P_{13}-P_{14}=0
\end{gathered}
$$

- In matrix vector form: $A p=0$
- 6 points give 12 equations, 12 variables to solve for
- But can only solve upto scale

Camera calibration

- In matrix vector form: $\mathrm{Ap}=0$
- We want non-trivial solutions
- If p is a solution, αp is a solution too
- Let's just search for a solution with unit norm

$$
\begin{aligned}
& \underset{\substack{\text { s.t } \\
\| \mathbf{p}}}{ }=0
\end{aligned}
$$

Camera calibration

- In matrix vector form: $\mathrm{Ap}=0$

Direct Linear

 Transformation- But there may be noise in the inputs
- Least squares solution:

$$
\begin{array}{ll}
\min _{\mathbf{p}}\|A \mathbf{p}\|^{2} & \equiv \min _{\mathbf{p}} \mathbf{p}^{T} A^{T} A \mathbf{p} \\
\text { s.t } \\
\|\mathbf{p}\|=1 & \|\mathbf{p}\|=1
\end{array}
$$

- Eigenvector of ATA with smallest eigenvalue! (also right singular vector pf A with smallest singular value)

Camera calibration through non-linear minimization

- Problem: $\|A \mathbf{p}\|^{2}$ does not capture meaningful metric of error
- Depends on units, origin of coordinates etc
- Really, want to measure reprojection error
- If \mathbf{Q} is projected to \mathbf{q}, but we think it should be projected to \mathbf{q}^{\prime}, reprojection error $=\left\|\mathbf{q}-\mathbf{q}^{\prime}\right\|^{2}$ (distance in Euclidean coordinates)

Reprojection error

$$
\begin{gathered}
{\left[\begin{array}{c}
\lambda x \\
\lambda y \\
\lambda
\end{array}\right]=\left[\begin{array}{llll}
P_{11} & P_{12} & P_{13} & P_{14} \\
P_{21} & P_{22} & P_{23} & P_{24} \\
P_{31} & P_{32} & P_{33} & P_{34}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]} \\
\Rightarrow x=\frac{P_{11} X+P_{12} Y+P_{13} Z+P_{14}}{P_{31} X+P_{32} Y+P_{33} Z+P_{34}} \\
y=\frac{P_{21} X+P_{22} Y+P_{23} Z+P_{24}}{P_{31} X+P_{32} Y+P_{33} Z+P_{34}}
\end{gathered}
$$

$$
\begin{aligned}
E(P) & =\left\|x-\frac{P_{11} X+P_{12} Y+P_{13} Z+P_{14}}{P_{31} X+P_{32} Y+P_{33} Z+P_{34}}\right\|^{2} \\
& +\left\|y-\frac{P_{21} X+P_{22} Y+P_{23} Z+P_{24}}{P_{31} X+P_{32} Y+P_{33} Z+P_{34}}\right\|^{2}
\end{aligned}
$$

Camera calibration through non-linear minimization

- Problem: $\|A \mathbf{p}\|^{2}$ does not capture meaningful metric of error
- Depends on units, origin of coordinates etc
- Really, want to measure reprojection error
- If \mathbf{Q} is projected to \mathbf{q}, but we think it should be projected to \mathbf{q}^{\prime}, reprojection error $=\left\|\mathbf{q}-\mathbf{q}^{\prime}\right\|^{2}$ (distance in Euclidean coordinates)

$$
\begin{array}{r}
\min _{P} E(P) \\
\text { s.t } \\
\|\mathbf{p}\|=1
\end{array}
$$

- No closed-form solution, but off-the-shelf iterative optimization

Camera calibration

- We need 6 world points for which we know image locations
- Would any 6 points work?
- What if all 6 points are the same?
- Need at least 6 non-coplanar points!

Camera calibration

What if object of interest is plane?

- Not that uncommon....

What if object of interest is plane?

- Let's choose world coordinate system so that plane is $X-Y$ plane

$$
\begin{array}{r}
{\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \equiv\left[\begin{array}{llll}
P_{11} & P_{12} & P_{13} & P_{14} \\
P_{21} & P_{22} & P_{23} & P_{24} \\
P_{31} & P_{32} & P_{33} & P_{34}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
0 \\
1
\end{array}\right]} \\
\equiv\left[\begin{array}{lll}
P_{11} & P_{12} & P_{14} \\
P_{21} & P_{22} & P_{24} \\
P_{31} & P_{32} & P_{34}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
1
\end{array}\right]
\end{array}
$$

What if object of interest is a plane?

- Imagine that plane is equipped with two axes.
- Points on the plane are represented by two euclidean coordinates
- ...Or 3 homogenous coordinates

What if object of interest is a plane?

Fitting homographies

- How many parameters does a homography have?
- Given a single point on the plane and corresponding image location, what does that tell us?

$$
\begin{gathered}
\overrightarrow{\mathbf{x}}_{i m g} \equiv H \overrightarrow{\mathbf{x}}_{w} \\
{\left[\begin{array}{c}
\lambda x \\
\lambda y \\
\lambda
\end{array}\right]=\left[\begin{array}{lll}
H_{11} & H_{12} & H_{13} \\
H_{21} & H_{22} & H_{23} \\
H_{31} & H_{32} & H_{33}
\end{array}\right]\left[\begin{array}{c}
x_{w} \\
y_{w} \\
1
\end{array}\right]}
\end{gathered}
$$

Fitting homographies

- How many parameters does a homography have?
- Given a single point on the plane and corresponding image location, what does that tell us?

- Convince yourself that this gives 2 linear equations!

Fitting homographies

- Homography has 9 parameters
- But can't determine scale factor, so only 8: 4 points!

$$
A \mathbf{h}=0 \text { s.t }\|\mathbf{h}\|=1
$$

- Or because we will have noise:

$$
\min _{\mathbf{h}}\|A \mathbf{h}\|^{2} \text { s.t }\|\mathbf{h}\|=1
$$

Fitting homographies

Homographies for image alignment

- A general mapping from one plane to another!
- Can also be used to align one photo of a plane to another photo of the same plane

Image 1

Original plane

Homographies for image alignment

- Can also be used to align one photo of a plane to another photo of the same plane

Image Alignment Algorithm

Given images A and B

1. Compute image features for A and B
2. Match features between A and B
3. Compute homography between A and B What could go wrong?

Fitting in general

- Fitting: find the parameters of a model that best fit the data
- Other examples:
- least squares linear regression

Least squares: linear regression

Linear regression

$\operatorname{Cost}(m, b)=\sum_{i=1}^{n}\left|y_{i}-\left(m x_{i}+b\right)\right|^{2}$

Linear regression

$$
\left[\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
\vdots & \\
x_{n} & 1
\end{array}\right]\left[\begin{array}{c}
m \\
b
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

Outliers

Robustness

Least squares fit

Idea

- Given a hypothesized line
- Count the number of points that "agree" with the line
- "Agree" = within a small distance of the line
- I.e., the inliers to that line
- For all possible lines, select the one with the largest number of inliers

Counting inliers

Counting inliers

Inliers: 3

Counting inliers

How do we find the best line?

- Unlike least-squares, no simple closed-form solution
- Hypothesize-and-test
- Try out many lines, keep the best one
- Which lines?

RANSAC (Random Sample Consensus)

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

- Idea:
- All the inliers will agree with each other on the translation vector; the (hopefully small) number of outliers will (hopefully) disagree with each other
- RANSAC only has guarantees if there are < 50\% outliers
- "All good matches are alike; every bad match is bad in its own way."
- Tolstoy via Alyosha Efros

Translations

RAndom SAmple Consensus

RAndom SAmple Consensus

RAndom SAmple Consensus

Final step: least squares fit

RANSAC

- Inlier threshold related to the amount of noise we expect in inliers
- Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)
- Number of rounds related to the percentage of outliers we expect, and the probability of success we'd like to guarantee
- Suppose there are 20% outliers, and we want to find the correct answer with 99\% probability
- How many rounds do we need?

How many rounds?

- If we have to choose k samples each time

- with an inlier ratio p
- and we want the right answer with probability P

proportion of inliers p								
k	95%	90%	80%	75%	70%	60%	50%	
2	2	3	5	6	7	11	17	
3	3	4	7	9	11	19	35	
4	3	5	9	13	17	34	72	
5	4	6	12	17	26	57	146	
6	4	7	16	24	37	97	293	
7	4	8	20	33	54	163	588	
8	5	9	26	44	78	272	1177	
$P=0.99$								

To ensure that the random sampling has a good chance of finding a true set of inliers, a sufficient number of trials S must be tried. Let p be the probability that any given correspondence is valid and P be the total probability of success after S trials. The likelihood in one trial that all k random samples are inliers is p^{k}. Therefore, the likelihood that S such trials will all fail is

$$
\begin{equation*}
1-P=\left(1-p^{k}\right)^{S} \tag{6.29}
\end{equation*}
$$

and the required minimum number of trials is

$$
\begin{equation*}
S=\frac{\log (1-P)}{\log \left(1-p^{k}\right)} \tag{6.30}
\end{equation*}
$$

proportion of inliers p								
k	95%	90%	80%	75%	70%	60%	50%	
2	2	3	5	6	7	11	17	
3	3	4	7	9	11	19	35	
4	3	5	9	13	17	34	72	
5	4	6	12	17	26	57	146	
6	4	7	16	24	37	97	293	
7	4	8	20	33	54	163	588	
8	5	9	26	44	78	272	1177	
$P=0.99$								

How big is k ?

- For alignment, depends on the motion model
- Here, each sample is a correspondence (pair of matching points)

Name	Matrix	\# D.O.F.	Preserves:	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation $+\cdots$	\square
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths $+\cdots$	\square
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles $+\cdots$	\square
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism $+\cdots$	\square
projective	$[\tilde{\boldsymbol{H}}]_{3 \times 3}$	8	straight lines	\square

RANSAC pros and cons

- Pros
- Simple and general
- Applicable to many different problems
- Often works well in practice
- Cons
- Parameters to tune
- Sometimes too many iterations are required
- Can fail for extremely low inlier ratios

RANSAC

- An example of a "voting"-based fitting scheme
- Each hypothesis gets voted on by each data point, best hypothesis wins
- There are many other types of voting schemes
- E.g., Hough transforms...

