Calibration and homographies

Final perspective projection

Camera extrinsics: where your camera is relative to the world. Changes if you move the camera

$$\vec{\mathbf{x}}_{img} \equiv P \vec{\mathbf{x}}_w$$

Final perspective projection

$$ec{\mathbf{x}}_{img} \equiv K \begin{bmatrix} R & \mathbf{t} \end{bmatrix} ec{\mathbf{x}}_w$$

$$\vec{\mathbf{x}}_{img} \equiv P \vec{\mathbf{x}}_w$$

• Goal: find the parameters of the camera

$$\vec{\mathbf{x}}_{img} \equiv K \begin{bmatrix} R & \mathbf{t} \end{bmatrix} \vec{\mathbf{x}}_w$$

- Why?
 - Tells you where the camera is relative to the world/particular objects
 - Equivalently, tells you where objects are relative to the camera
 - Can allow you to "render" new objects into the scene

Camera calibration

$$\vec{\mathbf{x}}_{img} \equiv P \vec{\mathbf{x}}_w$$

- Need to estimate P
- How many parameters does P have?
 - Size of P : 3 x 4
 - But: $\lambda P \vec{\mathbf{x}}_w \equiv P \vec{\mathbf{x}}_w$
 - P can only be known *upto a scale*
 - 3*4 1 = 11 parameters

$$\vec{\mathbf{x}}_{img} \equiv P \vec{\mathbf{x}}_w$$

- Suppose we know that (X,Y,Z) in the world projects to (x,y) in the image.
- How many equations does this provide?

$$\vec{\mathbf{x}}_{img} \equiv P \vec{\mathbf{x}}_w$$

- Suppose we know that (X,Y,Z) in the world projects to (x,y) in the image.
- How many equations does this provide?

Note:
$$\lambda$$
 is $\begin{bmatrix} \lambda x \\ \lambda y \\ \lambda \end{bmatrix} = P \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$

$$\vec{\mathbf{x}}_{img} \equiv P \vec{\mathbf{x}}_w$$

- Suppose we know that (X,Y,Z) in the world projects to (x,y) in the image.
- How many equations does this provide?

$$\begin{bmatrix} \lambda x \\ \lambda y \\ \lambda \end{bmatrix} = \begin{bmatrix} P_{11} & P_{12} & P_{13} & P_{14} \\ P_{21} & P_{22} & P_{23} & P_{24} \\ P_{31} & P_{32} & P_{33} & P_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\vec{\mathbf{x}}_{img} \equiv P \vec{\mathbf{x}}_w$$

- Suppose we know that (X,Y,Z) in the world projects to (x,y) in the image.
- How many equations does this provide? $\lambda x = P_{11}X + P_{12}Y + P_{13}Z + P_{14}$ $\lambda y = P_{21}X + P_{22}Y + P_{23}Z + P_{24}$ $\lambda = P_{31}X + P_{32}Y + P_{33}Z + P_{34}$

$$\vec{\mathbf{x}}_{img} \equiv P \vec{\mathbf{x}}_w$$

- Suppose we know that (X,Y,Z) in the world projects to (x,y) in the image.
- How many equations does this provide?

 $(P_{31}X + P_{32}Y + P_{33}Z + P_{34})x = P_{11}X + P_{12}Y + P_{13}Z + P_{14}$ $(P_{31}X + P_{32}Y + P_{33}Z + P_{34})y = P_{21}X + P_{22}Y + P_{23}Z + P_{24}$

- 2 equations!
- Are the equations linear in the parameters?
- How many equations do we need?

 $(P_{31}X + P_{32}Y + P_{33}Z + P_{34})x = P_{11}X + P_{12}Y + P_{13}Z + P_{14}$

 $X x P_{31} + Y x P_{32} + Z x P_{33} + x P_{34} - X P_{11} - Y P_{12} - Z P_{13} - P_{14} = 0$

- In matrix vector form: Ap = 0
- 6 points give 12 equations, 12 variables to solve for
- But can only solve upto scale

- In matrix vector form: Ap = 0
- We want non-trivial solutions
- If p is a solution, α p is a solution too
- Let's just search for a solution with unit norm

$$A\mathbf{p} = 0$$

s.t
$$\|\mathbf{p}\| = 1$$

- In matrix vector form: Ap = 0
- But there may be noise in the inputs
- Least squares solution:

 $\min_{\mathbf{p}} \|A\mathbf{p}\|^2 \equiv \min_{\mathbf{p}} \mathbf{p}^T A^T A\mathbf{p}$ s.t $\|\mathbf{p}\| = 1 \qquad \|\mathbf{p}\| = 1$

 Eigenvector of ATA with smallest eigenvalue! (also right singular vector pf A with smallest singular value)

Direct Linear Transformation

Camera calibration through non-linear minimization

- Problem: $||A\mathbf{p}||^2$ does not capture meaningful metric of error
 - Depends on units, origin of coordinates etc
- Really, want to measure reprojection error
 - If Q is projected to q, but we think it should be projected to q', reprojection error = ||q - q'||² (distance in Euclidean coordinates)

Reprojection error

$$\begin{bmatrix} \lambda x \\ \lambda y \\ \lambda \end{bmatrix} = \begin{bmatrix} P_{11} & P_{12} & P_{13} & P_{14} \\ P_{21} & P_{22} & P_{23} & P_{24} \\ P_{31} & P_{32} & P_{33} & P_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
$$\Rightarrow x = \frac{P_{11}X + P_{12}Y + P_{13}Z + P_{14}}{P_{31}X + P_{32}Y + P_{33}Z + P_{34}}$$
$$y = \frac{P_{21}X + P_{22}Y + P_{23}Z + P_{24}}{P_{31}X + P_{32}Y + P_{33}Z + P_{34}}$$

Camera calibration through non-linear minimization

- Problem: $||A\mathbf{p}||^2$ does not capture meaningful metric of error
 - Depends on units, origin of coordinates etc
- Really, want to measure reprojection error
 - If Q is projected to q, but we think it should be projected to q', reprojection error = ||q - q'||² (distance in Euclidean coordinates)

$$\min_{P} E(P)$$
s.t
$$\|\mathbf{p}\| = 1$$

• No closed-form solution, but off-the-shelf iterative optimization

- We need 6 world points for which we know image locations
- Would any 6 points work?
 - What if all 6 points are the same?
- Need at least 6 non-coplanar points!

Camera calibration

What if object of interest is plane?

• Not that uncommon....

What if object of interest is plane?

• Let's choose world coordinate system so that plane is X-Y plane

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \equiv \begin{bmatrix} P_{11} & P_{12} & P_{13} & P_{14} \\ P_{21} & P_{22} & P_{23} & P_{24} \\ P_{31} & P_{32} & P_{33} & P_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 0 \\ 1 \end{bmatrix}$$
$$\equiv \begin{bmatrix} P_{11} & P_{12} & P_{14} \\ P_{21} & P_{22} & P_{24} \\ P_{31} & P_{32} & P_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$$

What if object of interest is a plane?

- Imagine that plane is equipped with two axes.
- Points on the plane are represented by *two* euclidean coordinates
- ... Or 3 homogenous coordinates

$$\frac{2\text{D object (plane)}}{\vec{\mathbf{x}}_{img}} \equiv H\vec{\mathbf{x}}_w$$

What if object of interest is a plane?

 Homography maps points on the plane to pixels in the image

- How many parameters does a homography have?
- Given a single point on the plane and corresponding image location, what does that tell us?

$$\vec{\mathbf{x}}_{img} \equiv H\vec{\mathbf{x}}_w$$
$$\begin{bmatrix} \lambda x \\ \lambda y \\ \lambda \end{bmatrix} = \begin{bmatrix} H_{11} & H_{12} & H_{13} \\ H_{21} & H_{22} & H_{23} \\ H_{31} & H_{32} & H_{33} \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ 1 \end{bmatrix}$$

- How many parameters does a homography have?
- Given a single point on the plane and corresponding image location, what does that tell us?

$$\begin{bmatrix} \lambda x \\ \lambda y \\ \lambda \end{bmatrix} = \begin{bmatrix} H_{11} & H_{12} & H_{13} \\ H_{21} & H_{22} & H_{23} \\ H_{31} & H_{32} & H_{33} \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ 1 \end{bmatrix}$$

• Convince yourself that this gives 2 linear equations!

- Homography has 9 parameters
- But can't determine scale factor, so only 8: 4 points!

$$A\mathbf{h} = 0 \text{ s.t } \|\mathbf{h}\| = 1$$

• Or because we will have noise:

$$\min_{\mathbf{h}} \|A\mathbf{h}\|^2 \text{ s.t } \|\mathbf{h}\| = 1$$

Homographies for image alignment

- A general mapping from one plane to another!
- Can also be used to align one photo of a plane to another photo of the same plane

Homographies for image alignment

 Can also be used to align one photo of a plane to another photo of the same plane

http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/

Image Alignment Algorithm

Given images A and B

- 1. Compute image features for A and B
- 2. Match features between A and B
- 3. Compute homography between A and B

What could go wrong?

Fitting in general

- Fitting: find the parameters of a model that best fit the data
- Other examples:
 - least squares linear regression

Least squares: linear regression

Linear regression

Linear regression

Robustness

Idea

- Given a hypothesized line
- Count the number of points that "agree" with the line
 - "Agree" = within a small distance of the line
 - I.e., the inliers to that line
- For all possible lines, select the one with the largest number of inliers

Counting inliers

Counting inliers

Counting inliers

How do we find the best line?

- Unlike least-squares, no simple closed-form solution
- Hypothesize-and-test
 - Try out many lines, keep the best one
 - Which lines?

RANSAC (Random Sample Consensus)

Line fitting example

Algorithm:

- 1. Sample (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

Line fitting example

Algorithm:

- 1. Sample (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Line fitting example

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

RANSAC

- Idea:
 - All the inliers will agree with each other on the translation vector; the (hopefully small) number of outliers will (hopefully) disagree with each other
 - RANSAC only has guarantees if there are < 50% outliers
 - "All good matches are alike; every bad match is bad in its own way."
 - Tolstoy via Alyosha Efros

Translations

<u>RAndom SAmple Consensus</u>

<u>RAndom SAmple Consensus</u>

<u>RAndom SAmple Consensus</u>

Final step: least squares fit

RANSAC

- Inlier threshold related to the amount of noise we expect in inliers
 - Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)
- Number of rounds related to the percentage of outliers we expect, and the probability of success we'd like to guarantee
 - Suppose there are 20% outliers, and we want to find the correct answer with 99% probability
 - How many rounds do we need?

How many rounds?

- If we have to choose k samples each time
 - with an inlier ratio p
 - and we want the right answer with probability P

	proportion of inliers <i>p</i>						
k	95%	90%	80%	75%	70%	60%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

P = 0.99

To ensure that the random sampling has a good chance of finding a true set of inliers, a sufficient number of trials S must be tried. Let p be the probability that any given correspondence is valid and P be the total probability of success after S trials. The likelihood in one trial that all k random samples are inliers is p^k . Therefore, the likelihood that S such trials will all fail is

$$1 - P = (1 - p^k)^S ag{6.29}$$

and the required minimum number of trials is

$$S = \frac{\log(1-P)}{\log(1-p^k)}.$$
(6.30)

	proportion of inliers <i>p</i>						
k	95%	90%	80%	75%	70%	60%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

P = 0.99

How big is k?

- For alignment, depends on the motion model
 - Here, each sample is a correspondence (pair of matching points)

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$igg[egin{array}{c c c c c c c c c c c c c c c c c c c $	2	orientation $+\cdots$	
rigid (Euclidean)	$\left[egin{array}{c c} m{R} & t \end{array} ight]_{2 imes 3}$	3	lengths $+\cdots$	\Diamond
similarity	$\left[\left. s oldsymbol{R} \right t ight]_{2 imes 3}$	4	angles $+ \cdots$	\Diamond
affine	$\left[egin{array}{c} m{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

RANSAC pros and cons

- Pros
 - Simple and general
 - Applicable to many different problems
 - Often works well in practice
- Cons
 - Parameters to tune
 - Sometimes too many iterations are required
 - Can fail for extremely low inlier ratios

- An example of a "voting"-based fitting scheme
- Each hypothesis gets voted on by each data point, best hypothesis wins
- There are many other types of voting schemes
 - E.g., Hough transforms...