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homographies



Final perspective projection
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Camera intrinsics: 
how your camera 
handles pixel. 
Changes if you 
change your camera 

Camera extrinsics: where your camera is relative 
to the world. Changes if you move the camera
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Camera parameters



Camera calibration

• Goal: find the parameters of the camera

• Why?
• Tells you where the camera is relative to the 

world/particular objects
• Equivalently, tells you where objects are relative to the 

camera
• Can allow you to ”render” new objects into the scene
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Camera calibration

• Need to estimate P
• How many parameters does P have?
• Size of P : 3 x 4
• But: 
• P can only be known upto a scale
• 3*4 - 1 = 11 parameters

~ximg ⌘ P~xw

�P~xw ⌘ P~xw



Camera calibration

• Suppose we know that (X,Y,Z) in the world projects 
to (x,y) in the image.
• How many equations does this provide?

~ximg ⌘ P~xw
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Need to convert equivalence 
into equality.



Camera calibration

• Suppose we know that (X,Y,Z) in the world projects 
to (x,y) in the image.
• How many equations does this provide?
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unknown



Camera calibration

• Suppose we know that (X,Y,Z) in the world projects 
to (x,y) in the image.
• How many equations does this provide?
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Camera calibration

• Suppose we know that (X,Y,Z) in the world projects 
to (x,y) in the image.
• How many equations does this provide?

~ximg ⌘ P~xw

�x = P11X + P12Y + P13Z + P14

�y = P21X + P22Y + P23Z + P24

� = P31X + P32Y + P33Z + P34



Camera calibration

• Suppose we know that (X,Y,Z) in the world projects 
to (x,y) in the image.
• How many equations does this provide?

• 2 equations!
• Are the equations linear in the parameters?
• How many equations do we need?

~ximg ⌘ P~xw

(P31X + P32Y + P33Z + P34)x = P11X + P12Y + P13Z + P14

(P31X + P32Y + P33Z + P34)y = P21X + P22Y + P23Z + P24



Camera calibration

• In matrix vector form: Ap = 0
• 6 points give 12 equations, 12 variables to solve for
• But can only solve upto scale

(P31X + P32Y + P33Z + P34)x = P11X + P12Y + P13Z + P14

(P31X + P32Y + P33Z + P34)y = P21X + P22Y + P23Z + P24

XxP31 + Y xP32 + ZxP33 + xP34 �XP11 � Y P12 � ZP13 � P14 = 0



Camera calibration

• In matrix vector form: Ap = 0
• We want non-trivial solutions
• If p is a solution, !p is a solution too
• Let’s just search for a solution with unit norm

Ap = 0

kpk = 1
s.t



Camera calibration

• In matrix vector form: Ap = 0
• But there may be noise in the inputs
• Least squares solution:

• Eigenvector of ATA with smallest eigenvalue! (also right singular
vector pf A with smallest singular value)

kpk = 1
s.t s.t

kpk = 1

Direct Linear 
Transformation



Camera calibration through non-linear 
minimization
• Problem: | "# |$ does not capture meaningful metric of error
• Depends on units, origin of coordinates etc

• Really, want to measure reprojection error
• If Q is projected to q, but we think it should be projected to q’, reprojection 

error = ||q - q’||2 (distance in Euclidean coordinates)



Reprojection error

Reprojection 
error



Camera calibration through non-linear 
minimization
• Problem: | "# |$ does not capture meaningful metric of error
• Depends on units, origin of coordinates etc

• Really, want to measure reprojection error
• If Q is projected to q, but we think it should be projected to q’, reprojection 

error = ||q - q’||2 (distance in Euclidean coordinates)

• No closed-form solution, but off-the-shelf iterative optimization



Camera calibration

• We need 6 world points for which we know image locations
• Would any 6 points work?
• What if all 6 points are the same?

• Need at least 6 non-coplanar points!



Camera calibration
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What if object of interest is plane?

• Not that uncommon….



What if object of interest is plane?

• Let’s choose world coordinate system 
so that plane is X-Y planeY’

X’

Z’ OX
Y

Z



What if object of interest is a plane?

• Imagine that plane is equipped with two axes.
• Points on the plane are represented by two euclidean coordinates
• …Or 3 homogenous coordinates

~ximg ⌘ P~xw ~ximg ⌘ H~xw

3D object 2D object (plane)

3 x 4 3 x 3



What if object of interest is a plane?

• Homography maps 
points on the plane to 
pixels in the image

~ximg ⌘ H~xw

3 x 3

Homography



Fitting homographies

• How many parameters does a homography have?
• Given a single point on the plane and 

corresponding image location, what does that tell 
us?
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Fitting homographies

• How many parameters does a homography have?
• Given a single point on the plane and 

corresponding image location, what does that tell 
us?

• Convince yourself that this gives 2 linear equations!
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Fitting homographies

• Homography has 9 parameters
• But can’t determine scale factor, so only 8: 4 points!

• Or because we will have noise:

min
h

kAhk2 s.t khk = 1

Ah = 0 s.t khk = 1



Fitting homographies



Homographies for image alignment

• A general mapping from one plane to another!
• Can also be used to align one photo of a plane to another photo of 

the same plane

Original plane

Image 1 Image 2



Homographies for image alignment

• Can also be used to align one photo of a plane to another photo of 
the same plane

http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/

http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/


Image Alignment Algorithm

Given images A and B

1. Compute image features for A and B
2. Match features between A and B
3. Compute homography between A and B
What could go wrong?



• Fitting: find the parameters of a model that best fit the data
• Other examples:
• least squares linear regression

Fitting in general



Least squares: linear regression
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Linear regression
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Linear regression



Outliers outliers

inliers



Robustness

Problem: Fit a line to these datapoints Least squares fit



Idea

• Given a hypothesized line
• Count the number of points that “agree” with the line
• “Agree” = within a small distance of the line
• I.e., the inliers to that line

• For all possible lines, select the one with the largest number of inliers



Counting inliers



Counting inliers

Inliers: 3



Counting inliers

Inliers: 20



How do we find the best line?

• Unlike least-squares, no simple closed-form solution 

• Hypothesize-and-test
• Try out many lines, keep the best one
• Which lines?



RANSAC (Random Sample Consensus)

Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Illustration by Savarese

Line fitting example



RANSAC

Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example



RANSAC

Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example

d



d

RANSAC

14=IN
Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



RANSAC
• Idea:
• All the inliers will agree with each other on the translation 

vector; the (hopefully small) number of outliers will 
(hopefully) disagree with each other
• RANSAC only has guarantees if there are < 50% outliers

• “All good matches are alike; every bad match is bad in its 
own way.”

– Tolstoy via Alyosha Efros



Translations



RAndom SAmple Consensus

Select one match at random, count inliers



RAndom SAmple Consensus

Select another match at random, count inliers



RAndom SAmple Consensus

Output the translation with the highest number of inliers



Final step: least squares fit

Find average translation vector over all inliers



RANSAC
• Inlier threshold related to the amount of noise we 

expect in inliers
• Often model noise as Gaussian with some standard 

deviation (e.g., 3 pixels)
• Number of rounds related to the percentage of 

outliers we expect, and the probability of success 
we’d like to guarantee
• Suppose there are 20% outliers, and we want to find the 

correct answer with 99% probability 
• How many rounds do we need?



How many rounds? 

• If we have to choose k samples each time
• with an inlier ratio p
• and we want the right answer with probability P

proportion of inliers p
k 95% 90% 80% 75% 70% 60% 50%
2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1177

Source: M. Pollefeys

P = 0.99
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How big is k?
• For alignment, depends on the motion model
• Here, each sample is a correspondence (pair of matching 

points)



RANSAC pros and cons
• Pros
• Simple and general
• Applicable to many different problems
• Often works well in practice

• Cons
• Parameters to tune
• Sometimes too many iterations are required
• Can fail for extremely low inlier ratios



RANSAC

• An example of a “voting”-based fitting scheme
• Each hypothesis gets voted on by each data point, best hypothesis 

wins

• There are many other types of voting schemes
• E.g., Hough transforms…


