Calibration and
homographies




Final perspective projection

Camera extrinsics: where your camera is relative
to the world. Changes if you move the camera

Camera intrinsics:
how your camera
handles pixel.
Changes if you
change your camera

Ximg = PXy



Final perspective projection

Camera parameters

Ximg = PXy



Camera calibration

e Goal: find the parameters of the camera

e Why?
* Tells you where the camera is relative to the
world/particular objects

* Equivalently, tells you where objects are relative to the
camera

e Can allow you to “render” new objects into the scene



Camera calibration




Camera calibration

Ximg = PXy
e Need to estimate P

* How many parameters does P have?
e Sizeof P:3x4
e But: \PX,, = PX,,
* P can only be known upto a scale
e 3%4-1=11 parameters



Camera calibration

Ximg = PXy

* Suppose we know that (X,Y,Z) in the world projects

to (x,y) in the image.

* How many equations does this provide?

X
Y
1

=P

X

Need to convert equivalence
into equality.

Y
Z
_1_




Camera calibration

Ximg = PXy
* Suppose we know that (X,Y,Z) in the world projects
to (x,y) in the image.
* How many equations does this provide?

Note: A is _>\ZIZ‘_ ‘;(
unknown )\y — P
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Camera calibration

Ximg = PXy

* Suppose we know that (X,Y,Z) in the world projects
to (x,y) in the image.

* How many equations does this provide?

AT P11 P P13 Py

Ay | = [FPo1 Paa Pos oy
A P31 P3y P33 Psy
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Camera calibration

Ximg = PXy

* Suppose we know that (X,Y,Z) in the world projects
to (x,y) in the image.

* How many equations does this provide?
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Camera calibration

Ximg = PXy
* Suppose we know that (X,Y,Z) in the world projects
to (x,y) in the image.
* How many equations does this provide?

(P31 X 4 P32Y + P33 Z 4 Psy)x = P11 X + ProY + Pi3sZ + Py

(P31X + P3oY + P33Z + P3y)y = Po1 X + PaoY + PosZ + Poy
* 2 equations!

* Are the equations linear in the parameters?

* How many equations do we need?



Camera calibration

(P31 X 4+ P3oY + P33 Z + Pyy)x = P11 X + PoY + PisZ + Py

XZUPgl+YZCP32—|—ZQ?P33—|-ZL’P34—XP11—YPlQ—Zplg—P14:O

* In matrix vector form: Ap =0
* 6 points give 12 equations, 12 variables to solve for
* But can only solve upto scale



Camera calibration

* In matrix vector form: Ap =0

* We want non-trivial solutions

* If p is a solution, ap is a solution too

* Let’s just search for a solution with unit norm

Ap =0

S.t

pll=1



Camera calibration

Direct Linear

* In matrix vector form: Ap =0 Transformation
* But there may be noise in the inputs

* Least squares solution:

min || Ap||? = minp’ A' Ap
P P
S.t S.t

Ipl| =1 Ipll =

* Eigenvector of ATA with smallest eigenvalue! (also right singular
vector pf A with smallest singular value)



Camera calibration through non-linear
minimization
* Problem: ||Ap||? does not capture meaningful metric of error

* Depends on units, origin of coordinates etc

* Really, want to measure reprojection error

* If Qis projected to q, but we think it should be projected to q’, reprojection
error = | |q-q’| |? (distance in Euclidean coordinates)



Reprojection error

DY’
AY
A

= T

EE

P11 X 4 P1oY + Pi3Z 4 Pia
P31 X + P3oY + P332 + Py
Po1 X 4 PaY + PosZ + Poy
P31 X + P3oY + P332 + Py

P31 X + P3oY + P33Z + Psy
Po1 X + PooY + PosZ + Poy

I*

Reprojection



Camera calibration through non-linear
minimization
* Problem: ||Ap||? does not capture meaningful metric of error

* Depends on units, origin of coordinates etc

* Really, want to measure reprojection error

* If Qis projected to q, but we think it should be projected to q’, reprojection
error = | |q-q’| |? (distance in Euclidean coordinates)

m];nE(P)
S.t
Ipll =1

* No closed-form solution, but off-the-shelf iterative optimization



Camera calibration

* We need 6 world points for which we know image locations

* Would any 6 points work?
 What if all 6 points are the same?

* Need at least 6 non-coplanar points!



Camera calibration




What if object of interest is plane?

 Not that uncommon....




What if object of interest is plane?

. * Let’s choose world coordinate system

2 - Y so that plane is X-Y plane
_ _ S'd
x P11 P P13 Py

% Y
<\> ? _ Yyl = P21 P22 Pzg P24 0
1 [P P2 Pss Paa] |
X Py Py Py [X]

= [FPo1 FPoa Poyu| |Y
P31 P32 Pag| [ 1)




What if object of interest is a plane?

* Imagine that plane is equipped with two axes.
* Points on the plane are represented by two euclidean coordinates
¢ ...0Or 3 homogenous coordinates

3D object 2D object (plane)
Ximg = DXy Ximg = HXy

sy aiy




What if object of interest is a plane?

Homography

Ximg = HXy,

Ey

* Homography maps
points on the plane to
pixels in the image




Fitting homographies

* How many parameters does a homography have?

* Given a single point on the plane and
corresponding image location, what does that tell
us?

Ximg = HXy

AT Hi1 His Hiz| |z




Fitting homographies

* How many parameters does a homography have?

* Given a single point on the plane and
corresponding image location, what does that tell
us?

AT Hiyy Hio Hiz| |z
ANy | = |Hor Hoo Hoas| |y
Q\ﬁ H3y Hzx Hsz| | 1

e Convince yourself that this gives 2 linear equations!




Fitting homographies

* Homography has 9 parameters
* But can’t determine scale factor, so only 8: 4 points!

Ah=0s.t ||h|| =1

* Or because we will have noise:

min | A s.t [|h] = 1



Fitting homographies




Homographies for image alignment

* A general mapping from one plane to another!
e Can also be used to align one photo of a plane to another photo of

the same plane
I Image 2

Image 1

Original plane



Homographies for image alignment

e Can also be used to align one photo of a plane to another photo of
the same plane

http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/



http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/

Image Alignment Algorithm

Given images A and B

1. Compute image features for A and B

2. Match features between A and B

3. Compute homography between A and B
What could go wrong?



Fitting in general

e Fitting: find the parameters of a model that best fit the data

* Other examples:
* |least squares linear regression



Least squares: linear regression




Linear regression

12

101
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Linear regression

X1 1
L9 1
T, |1
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Robustness

Problem: Fit a line to these datapoints

Least squares fit




ldea

* Given a hypothesized line

* Count the number of points that “agree” with the line
* “Agree” = within a small distance of the line
 |.e., the inliers to that line

* For all possible lines, select the one with the largest number of inliers



Counting inliers




Counting inliers

Inliers: 3



Counting inliers

Inliers: 20



How do we find the best line?

e Unlike least-squares, no simple closed-form solution

* Hypothesize-and-test

* Try out many lines, keep the best one
* Which lines?



RANSAC (Random Sample Consensus) o0
o
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Line fitting example ‘
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Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

lllustration by Savarese



RANSAC

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence




RANSAC

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence




RANSAC

* |dea:

* All the inliers will agree with each other on the translation
vector; the (hopefully small) number of outliers will
(hopefully) disagree with each other

* RANSAC only has guarantees if there are < 50% outliers

* “All good matches are alike; every bad match is bad in its
own way.”

— Tolstoy via Alyosha Efros



Translations




RAndom SAmple Consensus
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Select one match at random, count inliers




RAndom SAmple Consensus
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Select another match at random, count inliers




RAndom SAmple Consensus
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Output the translation with the highest number of inliers




Final step: least squares fit
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Find average translation vector over all inliers




RANSAC

* Inlier threshold related to the amount of noise we
expect in inliers

* Often model noise as Gaussian with some standard
deviation (e.g., 3 pixels)
* Number of rounds related to the percentage of
outliers we expect, and the probability of success
we’d like to guarantee

* Suppose there are 20% outliers, and we want to find the
correct answer with 99% probability

* How many rounds do we need?



How many rounds?

* If we have to choose k samples each time
* with aninlier ratio p
* and we want the right answer with probability P

proportion of inliers p
95% 90% 80% 75% 70% 60% 50%
2 3 5 6 7 11 17
7 9 11 19 35
9 13 17 34 72
12 17 26 57 146
16 24 37 97 293
20 33 54 163 588
26 44 78 272 1177

P=0.99

OO U1 B WNIX
u b bbb wWWw
O 00N O U1 b

Source: M. Pollefeys



To ensure that the random sampling has a good chance of finding a true set of inliers, a
sufficient number of trials .S must be tried. Let p be the probability that any given correspon-
dence 1s valid and P be the total probability of success after S trials. The likelihood in one
trial that all & random samplefs are inliers is p*. Therefore, the likelihood that .S such trials
will all fail 1s

1—P=(1-pF*° (6.29)
and the required minimum number of trials is
log(1 — P)
log(1 —pk)’

S = (6.30)

proportion of inliers p
95% 90% 80% 75% 70% 60% 50%
2 3 5 6 7 11 17
7 9 11 19 35
9 13 17 34 72
12 17 26 57 146
16 24 37 97 293
20 33 54 163 588
26 44 78 272 1177

P=0.99

OO U1 B WNIX
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How big is k7

* For alignment, depends on the motion model
* Here, each sample is a correspondence (pair of matching

points)
! similarity projective
translation
'

/y O
-
Euclidean Ae

S~ x
Name Matrix # D.O.F. | Preserves: Icon
translation [ I ‘ t Lx:i 2 orientation + - - - j
rigid (Euclidean) [ Rt ]zx:a 3 lengths + - - - O
similarity [ sR ‘ t ]2><3 4 angles + - - - O
affine [ A hxx 6 parallelism + - - - D
]

projective [ H L X 8 straight lines
DX G




RANSAC pros and cons

® Pros
e Simple and general
* Applicable to many different problems
e Often works well in practice

e Cons
* Parameters to tune
* Sometimes too many iterations are required
* Can fail for extremely low inlier ratios



RANSAC

* An example of a “voting”-based fitting scheme

* Each hypothesis gets voted on by each data point, best hypothesis
wins

* There are many other types of voting schemes
* E.g., Hough transforms...



