Homogenous coordinates

Putting everything together

- Change coordinate system so that center of the coordinate system is at pinhole and Z axis is along viewing direction

$$
\mathbf{x}_{w}^{\prime}=R \mathbf{x}_{w}+\mathbf{t}
$$

- Perspective projection

$$
\begin{aligned}
\mathbf{x}_{w}^{\prime} & \equiv(X, Y, Z) & x & =\frac{X}{Z} \\
\mathbf{x}_{i m g}^{\prime} & \equiv(x, y) & y & =\frac{Y}{Z}
\end{aligned}
$$

The projection equation

$$
\begin{aligned}
& x=\frac{X}{Z} \\
& y=\frac{Y}{Z}
\end{aligned}
$$

- Is this equation linear?
- Can this equation be represented by a matrix multiplication?

Is projection linear?

$$
\begin{aligned}
X^{\prime}=a X+b & x^{\prime}=\frac{a X+b}{a Z+b} \\
Y^{\prime}=a Y+b & \\
Z^{\prime}=a Z+b & y^{\prime}=\frac{a Y+b}{a Z+b}
\end{aligned}
$$

Can projection be represented as a matrix multiplication?

Matrix multiplication $\left[\begin{array}{lll}a & b & c \\ p & q & r\end{array}\right]\left[\begin{array}{c}X \\ Y \\ Z\end{array}\right]=\left[\begin{array}{l}a X+b Y+c Z \\ p X+q Y+r Z\end{array}\right]$

Perspective

 projection$$
\begin{aligned}
x & =\frac{X}{Z} \\
y & =\frac{Y}{Z}
\end{aligned}
$$

The space of rays

- Every point on a ray maps it to a point on image plane
- Perspective projection maps rays to points
- All points $(\lambda x, \lambda y, \lambda)$ map to the same image point $(x, y, 1)$

Projective space

- Standard 2D space (plane) \mathbb{R}^{2} : Each point represented by 2 coordinates (x, y)
- Projective 2D space (plane) \mathbb{P}^{2} : Each "point" represented by 3 coordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$), BUT:
- $(\lambda x, \lambda y, \lambda z) \equiv(x, y, z)$
- Mapping \mathbb{R}^{2} to \mathbb{P}^{2} (points to rays):

$$
(x, y) \rightarrow(x, y, 1)
$$

- Mapping \mathbb{P}^{2} to \mathbb{R}^{2} (rays to points):

$$
(x, y, z) \rightarrow\left(\frac{x}{z}, \frac{y}{z}\right)
$$

Projective space and homogenous coordinates

- Mapping \mathbb{R}^{2} to \mathbb{P}^{2} (points to rays):

$$
(x, y) \rightarrow(x, y, 1)
$$

- Mapping \mathbb{P}^{2} to \mathbb{R}^{2} (rays to points):

$$
(x, y, z) \rightarrow\left(\frac{x}{z}, \frac{y}{z}\right)
$$

- A change of coordinates
- Also called homogenous coordinates

Homogenous coordinates

- In standard Euclidean coordinates
- 2D points : (x, y)
- 3D points : (x, y, z)
- In homogenous coordinates
- 2D points: $(x, y, 1)$
- 3D points : $(x, y, z, 1)$

Why homogenous coordinates?

$$
\begin{array}{cc}
{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right]=\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{c}
\frac{X}{Z} \\
\frac{Y}{Z} \\
1
\end{array}\right]} \\
\begin{array}{c}
\text { Homogenous } \\
\text { coordinates of } \\
\text { world point }
\end{array} & \begin{array}{c}
\text { Homogenous } \\
\text { coordinates of } \\
\text { image point }
\end{array} \\
\hline
\end{array}
$$

Why homogenous coordinates?

$$
\begin{gathered}
{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right] \equiv\left[\begin{array}{c}
\frac{X}{Z} \\
\frac{Y}{Z} \\
1
\end{array}\right]} \\
P \overrightarrow{\mathbf{x}}_{w} \equiv \overrightarrow{\mathbf{x}}_{i m g}
\end{gathered}
$$

- Perspective projection is matrix multiplication in homogenous coordinates!

Why homogenous coordinates?

$$
\left[\begin{array}{llll}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

- Translation is matrix multiplication in homogenous coordinates!

Homogenous coordinates

$\left[\begin{array}{llll}a & b & c & t_{x} \\ d & e & f & t_{y} \\ g & h & i & t_{z} \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}X \\ Y \\ Z \\ 1\end{array}\right]=\left[\begin{array}{c}a X+b Y+c Z+t_{x} \\ d X+e Y+f Z+t_{y} \\ g X+h Y+i Z+t_{z} \\ 1\end{array}\right]$

$$
\left[\begin{array}{cc}
M & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right]=\left[\begin{array}{c}
M \mathbf{x}_{w}+\mathbf{t} \\
1
\end{array}\right]
$$

Homogenous coordinates

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right] \equiv\left[\begin{array}{c}
\frac{X}{Z} \\
\frac{Y}{Z} \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \longmapsto\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right]
$$

Perspective projection in homogenous coordinates

$$
\begin{gathered}
\overrightarrow{\mathbf{x}}_{i m g} \equiv\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right]\left[\begin{array}{ll}
R & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
\overrightarrow{\mathbf{x}}_{i m g} \equiv\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}
\end{gathered}
$$

More about matrix transformations

$\left[\begin{array}{ll}I & \mathbf{0}\end{array}\right] 3 \times 4:$ Perspective projection
$\left[\begin{array}{ll}I & \mathbf{t} \\ 0^{T} & 1\end{array}\right] 4 \times 4$: Translation
$\left[\begin{array}{cc}M & \mathbf{t} \\ \mathbf{0}^{T} & 1\end{array}\right] \begin{aligned} & 4 \times 4: \text { Affine transformation } \\ & \text { (linear transformation }+\end{aligned}$ translation)

More about matrix transformations
$\left[\begin{array}{cc}M & \mathbf{t} \\ \mathbf{0}^{T} & 1\end{array}\right]$
$M^{T} M=I$
Euclidean

More about matrix transformations

$$
\left[\begin{array}{cc}
M & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]
$$

$$
M=s R
$$

$$
R^{T} R=I
$$

Similarity
transformation

More about matrix transformations

$$
\left[\begin{array}{ll}
M & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]
$$

$$
M=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & s_{z}
\end{array}\right]
$$

Anisotropic scaling and translation

More about matrix transformations

$\left[\begin{array}{ll}M & \mathbf{t} \\ \mathbf{0}^{T} & 1\end{array}\right]$

General affine transformation

Matrix transformations in 2D

Perspective projection in homogenous coordinates

$$
\begin{gathered}
\overrightarrow{\mathbf{x}}_{i m g} \equiv\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right]\left[\begin{array}{ll}
R & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
\overrightarrow{\mathbf{x}}_{i m g} \equiv\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}
\end{gathered}
$$

Matrix transformations in 2D

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}
$$

$K=\underset{\text { Translation }}{\left[\begin{array}{ccc}1 & 0 & t_{u} \\ 0 & 1 & t_{v} \\ 0 & 0 & 1\end{array}\right]}$

$K=\left[\begin{array}{ccc}s_{x} & \alpha & t_{u} \\ 0 & s_{y} & t_{v} \\ 0 & 0 & 1\end{array}\right] \quad$ to "pixels")
Added skew if image x and y axes are not perpendicular

Final perspective projection

Final perspective projection

$$
\begin{aligned}
\overrightarrow{\mathbf{x}}_{i m g} \equiv & K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
& \\
& \text { Cemera parameters }
\end{aligned}
$$

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w}
$$

Camera calibration

- Goal: find the parameters of the camera

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}
$$

- Why?
- Tells you where the camera is relative to the world/particular objects
- Equivalently, tells you where objects are relative to the camera
- Can allow you to "render" new objects into the scene

Camera calibration

Camera calibration

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w}
$$

- Need to estimate P
- How many parameters does P have?
- Size of $\mathrm{P}: 3 \times 4$
- But: $\lambda P \overrightarrow{\mathbf{x}}_{w} \equiv P \overrightarrow{\mathbf{x}}_{w}$
- P can only be known upto a scale
- 3*4-1 = 11 parameters

Camera calibration

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w}
$$

- Suppose we know that (X, Y, Z) in the world projects to (x, y) in the image.
- How many equations does this provide?

$$
\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \equiv P\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right] \xlongequal{\substack{\text { Need to convert equivalence } \\
\text { into equality. }}}
$$

Camera calibration

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w}
$$

- Suppose we know that (X, Y, Z) in the world projects to (x, y) in the image.
- How many equations does this provide?
$\begin{gathered}\text { Note: } \lambda \text { is } \\ \text { unknown }\end{gathered}\left[\begin{array}{c}\lambda x \\ \lambda y \\ \lambda\end{array}\right]=P\left[\begin{array}{c}X \\ Y \\ Z \\ 1\end{array}\right]$

Camera calibration

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w}
$$

- Suppose we know that (X, Y, Z) in the world projects to (x, y) in the image.
- How many equations does this provide?

$$
\left[\begin{array}{c}
\lambda x \\
\lambda y \\
\lambda
\end{array}\right]=\left[\begin{array}{llll}
P_{11} & P_{12} & P_{13} & P_{14} \\
P_{21} & P_{22} & P_{23} & P_{24} \\
P_{31} & P_{32} & P_{33} & P_{34}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

Camera calibration

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w}
$$

- Suppose we know that ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) in the world projects to (x, y) in the image.
- How many equations does this provide?

$$
\begin{aligned}
\lambda x & =P_{11} X+P_{12} Y+P_{13} Z+P_{14} \\
\lambda y & =P_{21} X+P_{22} Y+P_{23} Z+P_{24} \\
\lambda & =P_{31} X+P_{32} Y+P_{33} Z+P_{34}
\end{aligned}
$$

Camera calibration

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w}
$$

- Suppose we know that (X, Y, Z) in the world projects to (x, y) in the image.
- How many equations does this provide?
$\left(P_{31} X+P_{32} Y+P_{33} Z+P_{34}\right) x=P_{11} X+P_{12} Y+P_{13} Z+P_{14}$ $\left(P_{31} X+P_{32} Y+P_{33} Z+P_{34}\right) y=P_{21} X+P_{22} Y+P_{23} Z+P_{24}$
- 2 equations!
- Are the equations linear in the parameters?
- How many equations do we need?

Camera calibration

$$
\left(P_{31} X+P_{32} Y+P_{33} Z+P_{34}\right) x=P_{11} X+P_{12} Y+P_{13} Z+P_{14}
$$

$$
X x P_{31}+Y x P_{32}+Z x P_{33}+x P_{34}-X P_{11}-Y P_{12}-Z P_{13}-P_{14}=0
$$

- In matrix vector form: $A p=0$
- 6 points give 12 equations, 12 variables to solve for
- But can only solve upto scale

Camera calibration

- In matrix vector form: $A p=0$
- We want non-trivial solutions
- If p is a solution, αp is a solution too
- Let's just search for a solution with unit norm

$$
\begin{aligned}
& A \mathbf{p}=0 \\
& \text { s.t } \\
& \|\mathbf{p}\|=1
\end{aligned}
$$

- How do you solve this?

Camera calibration

- In matrix vector form: $\mathrm{Ap}=0$
- We want non-trivial solutions
- If p is a solution, αp is a solution too
- Let's just search for a solution with unit norm

$$
\begin{aligned}
& A \mathbf{p}, \mathbf{p}_{\text {s.t }}=0 \\
& \|\mathbf{p}\|=1
\end{aligned}
$$

- How do you solve this? Eigenvector with 0 eigenvalue!

Camera calibration

- We need 6 world points for which we know image locations
- Would any 6 points work?
- What if all 6 points are the same?
- Need at least 6 non-coplanar points!

Camera calibration

