
Feature descriptors and
matching

The SIFT descriptor

SIFT – Lowe IJCV 2004

• DoG for scale-space feature detection
• Take 16x16 square window around detected feature at appropriate scale

• Compute gradient orientation for each pixel
• Throw out weak edges (threshold gradient magnitude)
• Create histogram of surviving edge orientations: note: each pixel contributes

vote proportional to gradient magnitude
• Find mode of histogram and rotate patch so that mode is 0

Scale Invariant Feature Transform

Adapted from slide by David Lowe

0 2p

angle histogram

Mode=dominant
orientation

Create histogram
• Divide the 16x16 window into a 4x4 grid of cells (2x2 case

shown below)
• Compute an orientation histogram for each cell
• 16 cells * 8 orientations = 128 dimensional descriptor

SIFT descriptor

Adapted from slide by David Lowe

SIFT vector formation
• Computed on rotated and scaled version of window

according to computed orientation & scale
• resample the window

Reduce effect of illumination
• 128-dim vector normalized to 1: invariance to contrast

changes
• Threshold gradient magnitudes to avoid excessive

influence of high gradients
• after normalization, clamp gradients >0.2
• renormalize

Other tips and tricks
• When identifying dominant orientation, if multiple modes,

create multiple keypoints
• Weigh pixels in center of patch more highly (Gaussian

weights)
• Trilinear interpolation

• a given gradient contributes to 8 bins:
4 in space times 2 in orientation

Multiple modes when measuring dominant
orientation

0 π

Linear interpolation into orientation grid

• Blue arrows are centers of
orientation bin
• Pixel with red orientation

contributes to:
• Histogram A with weight q
• Histogram B with weight p

p
q

A

B

Bilinear interpolation into spatial grid cells

• Blue dots are centers of histograms
• Red pixel contributes to:
• Histogram A with weight proportional

to ! ⋅ #
• Histogram B with weight proportional

to $ ⋅ #
• Histogram A with weight proportional

to $ ⋅ %
• Histogram A with weight proportional

to ! ⋅ %

A B

CD

p
q

r

s

Properties of SIFT
Extraordinarily robust matching technique

• Can handle changes in viewpoint
• Up to about 60 degree out of plane rotation

• Can handle significant changes in illumination
• Sometimes even day vs. night (below)

• Fast and efficient—can run in real time
• Lots of code available:

http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_imple
mentations_of_SIFT

http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

Summary
• Keypoint detection: repeatable

and distinctive
• Corners, blobs, stable regions
• Harris, DoG

• Descriptors: invariant and
discriminative
• spatial histograms of orientation

• Next up: using correspondences
for reconstruction

Geometry of Image
Formation

The pinhole camera

• Let’s abstract out the details

The pinhole camera

• We don’t care about the other walls of the box, so let’s remove those

The pinhole camera

• Let’s look at a individual points in the world and not worry about
what they are.

The pinhole camera

• Let’s place the origin at the pinhole, with Z axis pointing away from
the screen (called camera plane)

Y

X

Z O

Z=-1

P =
(X,Y,Z) p =

(x,y)

The pinhole camera

• Let’s remove the wall with the pinhole: all we care about is that all
light rays of interest must pass through the pinhole, i.e., the origin

Y

X

Z O

Z=-1

P =
(X,Y,Z) p =

(x,y)

The pinhole camera

• Question: Where will we see the “image” of point P on the camera
plane?

Y

X

Z O

Z=-1

P =
(X,Y,Z) p =

(x,y)

The pinhole camera Y

X

Z O

Z=-1

P =
(X,Y,Z) p =

(x,y)
! " = $ + "(' − $)

" = 0 ⇒ ! " = $
" = 1 ⇒ ! " = '

! "
= 0 + " - − 0 , 0 + " / − 0 , 0 + " 0 − 0
= ("-, "/, "0)

The pinhole camera

• Pinhole camera collapses ray OP
to point p

• Any point on ray OP = ! +
$ − ! = #', #), #*

• For this point to lie on Z=-1 plane:
#∗* = −1
⇒ #∗ = −1

*
• Coordinates of point p:

Y

X

Z O
Z=-1

P =
(X,Y,Z)

p =
(x,y)

(�⇤X,�⇤Y,�⇤Z) = (
�X

Z
,
�Y

Z
,�1)

The projection equation

• A point P = (X, Y, Z) in 3D projects to a point p = (x,y)
in the image

• But pinhole camera’s image is inverted, invert it
back!

x =
�X

Z

y =
�Y

Z

x =
X

Z

y =
Y

Z

Another derivation

P = (X,Y,Z)

O

p =
(x,y,z)

Y

yZ

1

Y

Z
=

y

1

A virtual image plane

• A pinhole camera produces an inverted image
• Imagine a ”virtual image plane” in the front of the camera

P

O

Y

yZ

1

P

O

Y y

1
Z

The projection equation

x =
X

Z

y =
Y

Z

Consequence 1: Farther away objects are
smaller

(X, Y, Z)

(X, Y + h, Z)

Y + h

Z
� Y

Z
=

h

Z

Image of foot:

Image of head:

(
X

Z
,
Y

Z
)

(
X

Z
,
Y + h

Z
)

Consequence 2: Parallel lines converge at a
point
• Point on a line passing through

point A with direction D:
! " = $ + "&

• Parallel lines have the same
direction but pass through
different points

! " = $ + "&
' " = (+ "&

•

Consequence 2: Parallel lines converge at a
point
• Parallel lines have the same

direction but pass through
different points

! " = $ + "&
' " = (+ "&

• $ = $), $+, $,
• (= (), (+, (,
• & = &), &+, &,

Consequence 2: Parallel lines converge at a
point

• ! " = $% + "'%, $) + "'), $* + "'*
• + " = ,% + "'%, ,) + "'), ,* + "'*
• - " = ./012/

.30123
, .40124.30123

• 5 " = 6/012/
630123

, 640124630123
• Need to look at these points as

Z goes to infinity
• Same as " → ∞

Consequence 2: Parallel lines converge at a
point
• ! " = $%&'(%

$)&'()
, $+&'(+$)&'()

• , " = -%&'(%
-)&'()

, -+&'(+-)&'()

lim
�!1

AX + �DX

AZ + �DZ
= lim

�!1

AX
� +DX

AZ
� +DZ

=
DX

DZ

lim
�!1

q(�) = (
DX

DZ
,
DY

DZ
) lim

�!1
r(�) = (

DX

DZ
,
DY

DZ
)

Consequence 2: Parallel lines converge at a
point
• Parallel lines have the same direction but pass through different

points
! " = $ + "&
' " = (+ "&

• Parallel lines converge at the same point (*+*, ,
*.
*,
)

• This point of convergence is called the vanishing point
• What happens if &0 = 0?

Consequence 2: Parallel lines converge at a
point

What about planes?

NXX +NY Y +NZZ = d

) NX
X

Z
+NY

Y

Z
+NZ =

d

Z

) NXx+NY y +NZ =
d

Z

NXx+NY y +NZ = 0
Take the limit as Z approaches infinity

Vanishing line of
a plane

What about planes?

NXX +NY Y +NZZ = d
Normal: (NX,	NY,	NZ)

What do parallel planes look like?
NXX +NY Y +NZZ = cNXX +NY Y +NZZ = d

NXx+NY y +NZ = 0 NXx+NY y +NZ = 0

Parallel planes converge!
Vanishing lines

Vanishing line

• What happens if NX = NY = 0?
• Equation of the plane: Z = c
• Vanishing line?

NXX +NY Y +NZZ = d

Changing coordinate systems

Y

X

Z O

P = (X,Y,Z)

X

Y

Z

O’

Changing coordinate systems

X

Y

Z

O’

Y

X

Z

Changing coordinate systems

X

Y

Z

O’

Y

X

Z

Changing coordinate systems

X

Y

Z
O’

Y

X

Z

Changing coordinate systems

X

Y

Z O’

Y

X

Z

Changing coordinate systems

X

Y

Z O’

Y

X

Z

Rotations and translations

• How do you represent a rotation?
• A point in 3D: (X,Y,Z)
• Rotations can be represented as a matrix multiplication

• What are the properties of rotation matrices?v0 = Rv

Properties of rotation matrices

• Rotation does not change the length of vectors

v0 = Rv

kv0k2 = v0Tv0

= vTRTRv

kvk2 = vTv

) RTR = I

Properties of rotation matrices

) RTR = I

) det(R)2 = 1

) det(R) = ±1

det(R) = 1 det(R) = �1
Rotation Reflection

Rotation matrices

• Rotations in 3D have an axis
and an angle
• Axis: vector that does not

change when rotated

• Rotation matrix has
eigenvector that has
eigenvalue 1

Rv = v

Rotation matrices from axis and angle

• Rotation matrix for rotation about axis ! and "
• First define the following matrix

• Interesting fact: this matrix represents cross product

[v]⇥ =

2

4
0 �vz vy
vz 0 �vx
�vy vx 0

3

5

[v]⇥x = v ⇥ x

Rotation matrices from axis and angle

• Rotation matrix for rotation about axis ! and "
• Rodrigues’ formula for rotation matrices

R = I + (sin ✓)[v]⇥ + (1� cos ✓)[v]2⇥

Translations

• Can this be written as a matrix multiplication?

x0 = x+ t

Putting everything together

• Change coordinate system so that center of the coordinate system is
at pinhole and Z axis is along viewing direction

• Perspective projection
x0
w = Rxw + t

x0
w ⌘ (X,Y, Z)

x0
img ⌘ (x, y)

x =
X

Z

y =
Y

Z

