Feature descriptors and matching

The SIFT descriptor

Scale Invariant Feature Transform

- DoG for scale-space feature detection
- Take 16×16 square window around detected feature at appropriate scale
- Compute gradient orientation for each pixel
- Throw out weak edges (threshold gradient magnitude)
- Create histogram of surviving edge orientations: note: each pixel contributes vote proportional to gradient magnitude
- Find mode of histogram and rotate patch so that mode is 0

Mode=dominant

SIFT descriptor

Create histogram

- Divide the 16×16 window into a 4×4 grid of cells (2×2 case shown below)
- Compute an orientation histogram for each cell
- 16 cells * 8 orientations $=128$ dimensional descriptor

Image gradients

Keypoint descriptor

SIFT vector formation

- Computed on rotated and scaled version of window according to computed orientation \& scale
- resample the window

Image gradients

Reduce effect of illumination

-128-dim vector normalized to 1 : invariance to contrast changes

- Threshold gradient magnitudes to avoid excessive influence of high gradients
- after normalization, clamp gradients >0.2
- renormalize

Other tips and tricks

- When identifying dominant orientation, if multiple modes, create multiple keypoints
- Weigh pixels in center of patch more highly (Gaussian weights)
- Trilinear interpolation
- a given gradient contributes to 8 bins:

4 in space times 2 in orientation

Multiple modes when measuring dominant orientation

Linear interpolation into orientation grid

- Blue arrows are centers of orientation bin
- Pixel with red orientation contributes to:
- Histogram A with weight q
- Histogram B with weight p

Bilinear interpolation into spatial grid cells

- Blue dots are centers of histograms
- Red pixel contributes to:
- Histogram A with weight proportional to $r \cdot s$
- Histogram B with weight proportional to $p \cdot s$
- Histogram A with weight proportional to $p \cdot q$
- Histogram A with weight proportional to $r \cdot q$

Properties of SIFT

Extraordinarily robust matching technique

- Can handle changes in viewpoint
- Up to about 60 degree out of plane rotation
- Can handle significant changes in illumination
- Sometimes even day vs. night (below)
- Fast and efficient-can run in real time
- Lots of code available: http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known imple mentations of SIFT

Summary

- Keypoint detection: repeatable and distinctive
- Corners, blobs, stable regions
- Harris, DoG

- Descriptors: invariant and discriminative
- spatial histograms of orientation
- Next up: using correspondences for reconstruction

Geometry of Image Formation

The pinhole camera

- Let's abstract out the details

The pinhole camera

- We don't care about the other walls of the box, so let's remove those

The pinhole camera

- Let's look at a individual points in the world and not worry about what they are.

The pinhole camera

- Let's place the origin at the pinhole, with Z axis pointing away from the screen (called camera plane)

The pinhole camera

- Let's remove the wall with the pinhole: all we care about is that all light rays of interest must pass through the pinhole, i.e., the origin

The pinhole camera

- Question: Where will we see the "image" of point P on the camera plane?

The pinhole camera

The pinhole camera

- Pinhole camera collapses ray OP to point p
- Any point on ray OP $=0+$ $\lambda(P-O)=(\lambda X, \lambda Y, \lambda Z)$
- For this point to lie on $\mathrm{Z}=-1$ plane:

$$
\begin{aligned}
& \lambda^{*} Z=-1 \\
& \Rightarrow \lambda^{*}=\frac{-1}{Z}
\end{aligned}
$$

- Coordinates of point p:

$$
\left(\lambda^{*} X, \lambda^{*} Y, \lambda^{*} Z\right)=\left(\frac{-X}{Z}, \frac{-Y}{Z},-1\right)
$$

The projection equation

- A point $P=(X, Y, Z)$ in $3 D$ projects to a point $p=(x, y)$ in the image

$$
\begin{aligned}
& x=\frac{-X}{Z} \\
& y=\frac{-Y}{Z}
\end{aligned}
$$

- But pinhole camera's image is inverted, invert it back!

$$
\begin{aligned}
& x=\frac{X}{Z} \\
& y=\frac{Y}{Z}
\end{aligned}
$$

Another derivation

A virtual image plane

- A pinhole camera produces an inverted image
- Imagine a "virtual image plane" in the front of the camera

The projection equation

$$
\begin{aligned}
x & =\frac{X}{Z} \\
y & =\frac{Y}{Z}
\end{aligned}
$$

Consequence 1: Farther away objects are smaller

$$
\begin{array}{ll}
\text { Image of foot: }\left(\frac{X}{Z}, \frac{Y}{Z}\right) & \frac{Y+h}{Z}-\frac{Y}{Z}=\frac{h}{Z} \\
\text { Image of head: }\left(\frac{X}{Z}, \frac{Y+h}{Z}\right) &
\end{array}
$$

Consequence 2: Parallel lines converge at a point

- Point on a line passing through point A with direction D:

$$
Q(\lambda)=A+\lambda D
$$

- Parallel lines have the same direction but pass through different points

$$
\begin{aligned}
& Q(\lambda)=A+\lambda D \\
& R(\lambda)=B+\lambda D
\end{aligned}
$$

Consequence 2: Parallel lines converge at a point

- Parallel lines have the same direction but pass through different points

$$
\begin{aligned}
& Q(\lambda)=A+\lambda D \\
& R(\lambda)=B+\lambda D
\end{aligned}
$$

- $A=\left(A_{X}, A_{Y}, A_{Z}\right)$
- $B=\left(B_{X}, B_{Y}, B_{Z}\right)$

- $D=\left(D_{X}, D_{Y}, D_{Z}\right)$

Consequence 2: Parallel lines converge at a point

- $Q(\lambda)=\left(A_{X}+\lambda D_{X}, A_{Y}+\lambda D_{Y}, A_{Z}+\lambda D_{Z}\right)$
- $R(\lambda)=\left(B_{X}+\lambda D_{X}, B_{Y}+\lambda D_{Y}, B_{Z}+\lambda D_{Z}\right)$
- $q(\lambda)=\left(\frac{A_{X}+\lambda D_{X}}{A_{Z}+\lambda D_{Z}}, \frac{A_{Y}+\lambda D_{Y}}{A_{Z}+\lambda D_{Z}}\right)$
- $r(\lambda)=\left(\frac{B_{X}+\lambda D_{X}}{B_{Z}+\lambda D_{Z}}, \frac{B_{Y}+\lambda D_{Y}}{B_{Z}+\lambda D_{Z}}\right)$
- Need to look at these points as
 Z goes to infinity
- Same as $\lambda \rightarrow \infty$

Consequence 2: Parallel lines converge at a point

- $q(\lambda)=\left(\frac{A_{X}+\lambda D_{X}}{A_{Z}+\lambda D_{Z}}, \frac{A_{Y}+\lambda D_{Y}}{A_{Z}+\lambda D_{Z}}\right)$
- $r(\lambda)=\left(\frac{B_{X}+\lambda D_{X}}{B_{Z}+\lambda D_{Z}}, \frac{B_{Y}+\lambda D_{Y}}{B_{Z}+\lambda D_{Z}}\right)$

$$
\lim _{\lambda \rightarrow \infty} \frac{A_{X}+\lambda D_{X}}{A_{Z}+\lambda D_{Z}}=\lim _{\lambda \rightarrow \infty} \frac{\frac{A_{X}}{\lambda}+D_{X}}{\frac{A_{Z}}{\lambda}+D_{Z}}=\frac{D_{X}}{D_{Z}}
$$

$$
\lim _{\lambda \rightarrow \infty} q(\lambda)=\left(\frac{D_{X}}{D_{Z}}, \frac{D_{Y}}{D_{Z}}\right)
$$

$$
\lim _{\lambda \rightarrow \infty} r(\lambda)=\left(\frac{D_{X}}{D_{Z}}, \frac{D_{Y}}{D_{Z}}\right)
$$

Consequence 2: Parallel lines converge at a point

- Parallel lines have the same direction but pass through different points

$$
\begin{aligned}
& Q(\lambda)=A+\lambda D \\
& R(\lambda)=B+\lambda D
\end{aligned}
$$

- Parallel lines converge at the same point $\left(\frac{D_{X}}{D_{Z}}, \frac{D_{Y}}{D_{Z}}\right)$
- This point of convergence is called the vanishing point
- What happens if $D_{Z}=0$?

Consequence 2: Parallel lines converge at a point

What about planes?

$$
\begin{aligned}
& N_{X} X+N_{Y} Y+N_{Z} Z=d \\
\Rightarrow & N_{X} \frac{X}{Z}+N_{Y} \frac{Y}{Z}+N_{Z}=\frac{d}{Z} \\
\Rightarrow & N_{X} x+N_{Y} y+N_{Z}=\frac{d}{Z}
\end{aligned}
$$

Take the limit as Z approaches infinity

$$
N_{X} x+N_{Y} y+N_{Z}=0
$$

What about planes?

$N_{X} X+N_{Y} Y+N_{Z} Z=d$
Normal: $\left(N_{X}, N_{V}, N_{Z}\right)$
What do parallel planes look like?

$N_{X} X+N_{Y} Y+N_{Z} Z=c$

Vanishing lines
Parallel planes converge!

Vanishing line

$$
N_{X} X+N_{Y} Y+N_{Z} Z=d
$$

- What happens if $\mathrm{N}_{\mathrm{X}}=\mathrm{N}_{\mathrm{Y}}=0$?
- Equation of the plane: $Z=c$
- Vanishing line?

Changing coordinate systems

Rotations and translations

- How do you represent a rotation?
- A point in 3D: (X,Y,Z)
- Rotations can be represented as a matrix multiplication
- What are the properties of v^{\prime} ot $\overline{\overline{t a}}$ io R Matrices?

Properties of rotation matrices

- Rotation does not change the length of vectors

$$
\begin{gathered}
\mathbf{v}^{\prime}=R \mathbf{v} \\
\left\|\mathbf{v}^{\prime}\right\|^{2}=\mathbf{v}^{\prime T} \mathbf{v}^{\prime} \\
=\mathbf{v}^{T} R^{T} R \mathbf{v} \\
\|\mathbf{v}\|^{2}=\mathbf{v}^{T} \mathbf{v} \\
\Rightarrow R^{T} R=I
\end{gathered}
$$

Properties of rotation matrices

$$
\begin{aligned}
& \Rightarrow R^{T} R=I \\
& \Rightarrow \operatorname{det}(R)^{2}=1 \\
& \Rightarrow \operatorname{det}(R)= \pm 1
\end{aligned}
$$

$$
\begin{array}{cc}
\operatorname{det}(R)=1 & \operatorname{det}(R)=-1 \\
\text { Rotation } & \text { Reflection }
\end{array}
$$

Rotation matrices

- Rotations in 3D have an axis and an angle
- Axis: vector that does not change when rotated

$$
R \mathbf{v}=\mathbf{v}
$$

- Rotation matrix has eigenvector that has eigenvalue 1

Rotation matrices from axis and angle

- Rotation matrix for rotation about axis \boldsymbol{v} and θ
- First define the following matrix

$$
[\mathbf{v}]_{\times}=\left[\begin{array}{ccc}
0 & -v_{z} & v_{y} \\
v_{z} & 0 & -v_{x} \\
-v_{y} & v_{x} & 0
\end{array}\right]
$$

- Interesting fact: this matrix represents cross product

$$
[\mathbf{v}]_{\times} \mathbf{x}=\mathbf{v} \times \mathbf{x}
$$

Rotation matrices from axis and angle

- Rotation matrix for rotation about axis \boldsymbol{v} and θ
- Rodrigues' formula for rotation matrices

$$
R=I+(\sin \theta)[\mathbf{v}]_{\times}+(1-\cos \theta)[\mathbf{v}]_{\times}^{2}
$$

Translations

$$
\mathbf{x}^{\prime}=\mathbf{x}+\mathbf{t}
$$

- Can this be written as a matrix multiplication?

Putting everything together

- Change coordinate system so that center of the coordinate system is at pinhole and Z axis is along viewing direction

$$
\mathbf{x}_{w}^{\prime}=R \mathbf{x}_{w}+\mathbf{t}
$$

- Perspective projection

$$
\begin{array}{rlr}
\mathbf{x}_{w}^{\prime} \equiv(X, Y, Z) & x=\frac{X}{Z} \\
{ }_{i m g}^{\prime} & \equiv(x, y) & y=\frac{Y}{Z}
\end{array}
$$

