
Feature descriptors and 
matching



The SIFT descriptor

SIFT – Lowe IJCV 2004



• DoG for scale-space feature detection
• Take 16x16 square window around detected feature at appropriate scale

• Compute gradient orientation for each pixel
• Throw out weak edges (threshold gradient magnitude)
• Create histogram of surviving edge orientations: note: each pixel contributes 

vote proportional to gradient magnitude
• Find mode of histogram and rotate patch so that mode is 0

Scale Invariant Feature Transform

Adapted from slide by David Lowe
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Create histogram
• Divide the 16x16 window into a 4x4 grid of cells (2x2 case 

shown below)
• Compute an orientation histogram for each cell
• 16 cells * 8 orientations = 128 dimensional descriptor

SIFT descriptor

Adapted from slide by David Lowe



SIFT vector formation
• Computed on rotated and scaled version of window 

according to computed orientation & scale
• resample the window



Reduce effect of illumination
• 128-dim vector normalized to 1: invariance to contrast 

changes 
• Threshold gradient magnitudes to avoid excessive 

influence of high gradients
• after normalization, clamp gradients >0.2
• renormalize



Other tips and tricks
• When identifying dominant orientation, if multiple modes, 

create multiple keypoints
• Weigh pixels in center of patch more highly (Gaussian 

weights)
• Trilinear interpolation 

• a given gradient contributes to 8 bins: 
4 in space times 2 in orientation



Multiple modes when measuring dominant 
orientation
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Linear interpolation into orientation grid

• Blue arrows are centers of 
orientation bin
• Pixel with red orientation 

contributes to:
• Histogram A with weight q
• Histogram B with weight p
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Bilinear interpolation into spatial grid cells

• Blue dots are centers of histograms
• Red pixel contributes to:
• Histogram A with weight proportional 

to ! ⋅ #
• Histogram B with weight proportional 

to $ ⋅ #
• Histogram A with weight proportional 

to $ ⋅ %
• Histogram A with weight proportional 

to ! ⋅ %
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Properties of SIFT
Extraordinarily robust matching technique

• Can handle changes in viewpoint
• Up to about 60 degree out of plane rotation

• Can handle significant changes in illumination
• Sometimes even day vs. night (below)

• Fast and efficient—can run in real time
• Lots of code available: 

http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_imple
mentations_of_SIFT

http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT


Summary
• Keypoint detection: repeatable 

and distinctive
• Corners, blobs, stable regions
• Harris, DoG

• Descriptors: invariant and 
discriminative
• spatial histograms of orientation

• Next up: using correspondences 
for reconstruction



Geometry of Image 
Formation



The pinhole camera

• Let’s abstract out the details



The pinhole camera

• We don’t care about the other walls of the box, so let’s remove those



The pinhole camera

• Let’s look at a individual points in the world and not worry about 
what they are.



The pinhole camera

• Let’s place the origin at the pinhole, with Z axis pointing away from 
the screen (called camera plane)
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The pinhole camera

• Let’s remove the wall with the pinhole: all we care about is that all 
light rays of interest must pass through the pinhole, i.e., the origin 
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The pinhole camera

• Question: Where will we see the “image” of point P on the camera 
plane?
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The pinhole camera Y

X

Z O

Z=-1

P = 
(X,Y,Z) p = 

(x,y)
! " = $ + "(' − $)

" = 0 ⇒ ! " = $
" = 1 ⇒ ! " = '

! "
= 0 + " - − 0 , 0 + " / − 0 , 0 + " 0 − 0
= ("-, "/, "0)



The pinhole camera

• Pinhole camera collapses ray OP 
to point p

• Any point on ray OP = ! +
# $ − ! = #', #), #*

• For this point to lie on Z=-1 plane:
#∗* = −1
⇒ #∗ = −1

*
• Coordinates of point p:
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The projection equation

• A point P = (X, Y, Z) in 3D projects to a point p = (x,y) 
in the image

• But pinhole camera’s image is inverted, invert it 
back!
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Another derivation

P = (X,Y,Z)
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(x,y,z)
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A virtual image plane

• A pinhole camera produces an inverted image
• Imagine a ”virtual image plane” in the front of the camera
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The projection equation
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Consequence 1: Farther away objects are 
smaller
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Consequence 2: Parallel lines converge at a 
point
• Point on a line passing through 

point A with direction D:
! " = $ + "&

• Parallel lines have the same 
direction but pass through 
different points

! " = $ + "&
' " = ( + "&

•



Consequence 2: Parallel lines converge at a 
point
• Parallel lines have the same 

direction but pass through 
different points

! " = $ + "&
' " = ( + "&

• $ = $), $+, $,
• ( = (), (+, (,
• & = &), &+, &,



Consequence 2: Parallel lines converge at a 
point

• ! " = $% + "'%, $) + "'), $* + "'*
• + " = ,% + "'%, ,) + "'), ,* + "'*
• - " = ./012/

.30123
, .40124.30123

• 5 " = 6/012/
630123

, 640124630123
• Need to look at these points as 

Z goes to infinity 
• Same as " → ∞



Consequence 2: Parallel lines converge at a 
point
• ! " = $%&'(%
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Consequence 2: Parallel lines converge at a 
point
• Parallel lines have the same direction but pass through different 

points
! " = $ + "&
' " = ( + "&

• Parallel lines converge at the same point (*+*, ,
*.
*,
)

• This point of convergence is called the vanishing point
• What happens if &0 = 0?



Consequence 2: Parallel lines converge at a 
point



What about planes?

NXX +NY Y +NZZ = d

) NX
X

Z
+NY

Y

Z
+NZ =

d

Z

) NXx+NY y +NZ =
d

Z

NXx+NY y +NZ = 0
Take the limit as Z approaches infinity

Vanishing line of 
a plane



What about planes?

NXX +NY Y +NZZ = d
Normal: (NX,	NY,	NZ)

What do parallel planes look like?
NXX +NY Y +NZZ = cNXX +NY Y +NZZ = d

NXx+NY y +NZ = 0 NXx+NY y +NZ = 0

Parallel planes converge!
Vanishing lines



Vanishing line

• What happens if NX = NY = 0?
• Equation of the plane: Z = c
• Vanishing line?

NXX +NY Y +NZZ = d



Changing coordinate systems
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Changing coordinate systems
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Changing coordinate systems
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Changing coordinate systems
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Changing coordinate systems
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Changing coordinate systems
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Rotations and translations

• How do you represent a rotation?
• A point in 3D: (X,Y,Z)
• Rotations can be represented as a matrix multiplication

• What are the properties of rotation matrices?v0 = Rv



Properties of rotation matrices

• Rotation does not change the length of vectors

v0 = Rv

kv0k2 = v0Tv0

= vTRTRv

kvk2 = vTv

) RTR = I



Properties of rotation matrices

) RTR = I

) det(R)2 = 1

) det(R) = ±1

det(R) = 1 det(R) = �1
Rotation Reflection



Rotation matrices

• Rotations in 3D have an axis 
and an angle
• Axis: vector that does not 

change when rotated

• Rotation matrix has 
eigenvector that has 
eigenvalue 1

Rv = v



Rotation matrices from axis and angle

• Rotation matrix for rotation about axis ! and "
• First define the following matrix

• Interesting fact: this matrix represents cross product

[v]⇥ =

2

4
0 �vz vy
vz 0 �vx
�vy vx 0

3

5

[v]⇥x = v ⇥ x



Rotation matrices from axis and angle

• Rotation matrix for rotation about axis ! and "
• Rodrigues’ formula for rotation matrices

R = I + (sin ✓)[v]⇥ + (1� cos ✓)[v]2⇥



Translations

• Can this be written as a matrix multiplication?

x0 = x+ t



Putting everything together

• Change coordinate system so that center of the coordinate system is 
at pinhole and Z axis is along viewing direction

• Perspective projection
x0
w = Rxw + t

x0
w ⌘ (X,Y, Z)

x0
img ⌘ (x, y)

x =
X

Z

y =
Y

Z


