
Correspondence: Feature
detection



A general pipeline for correspondence

1. If sparse correspondences are enough, choose points for which we 
will search for correspondences (feature points)

2. For each point (or every pixel if dense correspondence), describe 
point using a feature descriptor

3. Find best matching descriptors across two images (feature 
matching)

4. Use feature matches to perform downstream task, e.g., pose 
estimation 



Characteristics of good feature 
points

• Repeatability / invariance
• The same feature point can be found in several images despite 

geometric and photometric transformations 

• Saliency / distinctiveness
• Each feature point is distinctive
• Fewer ”false” matches



Goal: repeatability
• We want to detect (at least some of) the same points in both images.

• Yet we have to be able to run the detection procedure independently per 
image.

No chance to find true matches!

Kristen Grauman



Goal: distinctiveness

• The feature point should be distinctive enough that it is easy to match
• Should at least be distinctive from other patches nearby

????



The aperture problem



The aperture problem

• Individual pixels are ambiguous
• Idea: Look at whole patches!



The aperture problem

• Individual pixels are ambiguous
• Idea: Look at whole patches!



The aperture problem

• Some local neighborhoods are ambiguous



The aperture problem



Corner detection

• Main idea: Translating window should cause large differences in patch 
appearance



Corner Detection: Basic Idea
• We should easily recognize the point by looking 

through a small window
• Shifting a window in any direction should give a 

large change in intensity

“edge”:
no change 
along the edge 
direction

“corner”:
significant 
change in all 
directions

“flat” region:
no change in 
all directions

Source: A. Efros



Corner detection the math

• Consider shifting the window W
by (u,v)
• how do the pixels in W change?

• Write pixels in window as a vector: W

�0 = [I(0, 0), I(0, 1), . . . , I(n, n)]

�1 = [I(0 + u, 0 + v), I(0 + u, 1 + v), . . . , I(n+ u, n+ v)]

E(u, v) = k�0 � �1k22
=
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Consider shifting the window W by (u,v)
• how do the pixels in W change?
• compare each pixel before and after by

summing up the squared differences (SSD)
• this defines an SSD “error” E(u,v):
! ", $
= &

',( ∈*
+ , + ", . + $ − + ,, . 0

• We want E(u,v) to be as high as possible 
for all u, v!

Corner detection:  the math

W



Taylor Series expansion of I:

If the motion (u,v) is small, then first order approximation is good

Plugging this into the formula on the previous slide…

Small motion assumption



Corner detection:  the math

Consider shifting the window W by (u,v)
• define an SSD “error” E(u,v):

W



Corner detection:  the math

Consider shifting the window W by (u,v)
• define an “error” E(u,v):

W

• Thus, E(u,v) is locally approximated as a quadratic error function



A more general formulation

• Maybe all pixels in the patch are not equally important
• Consider a “window function” !(#, %) that acts as weights
• ' (, ) = ∑ ,,- ∈/ !(#, %) 0 # + (, % + ) − 0 #, % 3

• Case till now:
• w(x,y) = 1 inside the window, 0 otherwise



Using a window function

• Change in appearance of window w(x,y)  for the shift [u,v]:

[ ]2
,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y= + + -å

IntensityShifted 
intensity

Window 
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside

Source: R. Szeliski



Redoing the derivation using a window 
function
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Redoing the derivation using a window 
function
•
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The second moment matrix

Second moment matrix

M



The second moment matrix

Second moment matrix

M

Recall that we want E(u,v) to be as large as possible 
for all u,v

What does this mean in terms of M?



Flat patch: 

M
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Vertical edge: 
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Horizontal edge: 
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What about edges in arbitrary orientation?



E(u, v) ⇡
⇥
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, E(u, v) = 0

Solutions to Mx = 0 are directions for which E 
is 0: window can slide in this direction 
without changing appearance



E(u, v) ⇡
⇥
u v

⇤
M


u
v
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Solutions to Mx = 0 are directions for which E 
is 0: window can slide in this direction 
without changing appearance

For corners, we want no such directions to 
exist



u v

E(u,v)
E(u,v) E(u,v) E(u,v)

v v vu u u



Eigenvalues and eigenvectors of M

• !" = 0 ⇒ !" = &": x is an eigenvector of M with 
eigenvalue 0
• M is 2 x 2, so it has 2 eigenvalues (&()*, &(,-) with 

eigenvectors ("()*, "(,-)
• / "()* = "()*0 !"()* = &()*||"()*||2 = &()*

(eigenvectors have unit norm)
• / "(,- = "(,-0 !"(,- = &(,-||"(,-||2 = &(,-



Eigenvalues and eigenvectors of M

Eigenvalues and eigenvectors of M
• Define shift directions with the smallest and largest change in error
• xmax = direction of largest increase in E
• lmax = amount of increase in direction xmax

• xmin = direction of smallest increase in E
• lmin = amount of increase in direction xmin

xmin

xmax
M
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!"#$ ≈ !"&' ≫ 0
E very high in all directions

Corner

!"#$ ≫ !"&', !"&' ≈ 0
E remains close to 0 
along +"&'

Edge!"#$, !"&' are small;
E is almost 0 in all 
directions Flat patch

!"&'

!"#$

Interpreting the eigenvalues



Computing the second moment matrix 
efficiently

• Window function w(x,y) typically a 
Gaussian centered on the window

• ! ", $ = &'
()(* +
,+ ' -)-* +

,+

• Need to compute this matrix 
efficiently for every window location



Computing the second moment matrix 
efficiently

• Step 1: Place k x k window
• Step 2: Compute ∑",$∈&' (, ) *" (, ) + =
∑",$ -.

/0/1 2
32 . 4041 2

32 *" (, ) + (similarly other terms)
• This can be expressed as a convolution!



Computing the second moment matrix

• Compute image gradients !", !$ (both of these are images) 
• Might want to blur with a Gaussian before doing this. Why?

• Compute !"%, !$%, !"!$ (these are images too)
• Convolve with windowing function (typically Gaussian)
• Assemble second moment matrix at every pixel



Corner detection:  the math
How are lmax, xmax, lmin, and xmin relevant for feature detection?

• Need a feature scoring function
Want E(u,v) to be large for small shifts in all directions

• the minimum of E(u,v) should be large, over all unit vectors [u v]
• this minimum is given by the smaller eigenvalue (lmin) of M



Corner detection summary
Here’s what you do

• Compute the gradient at each point in the image
• Create the M matrix from the entries in the gradient
• Compute the eigenvalues 
• Find points with large response (lmin > threshold)
• Choose those points where lmin is a local maximum as features



Corner detection summary
Here’s what you do

• Compute the gradient at each point in the image
• Create the H matrix from the entries in the gradient
• Compute the eigenvalues. 
• Find points with large response (lmin > threshold)
• Choose those points where lmin is a local maximum as features



The Harris operator

lmin is a variant of the “Harris operator” for feature detection

• The trace is the sum of the diagonals, i.e., trace(H) = h11 + h22

• Very similar to lmin but less expensive (no square root)
• Called the “Harris Corner Detector” or “Harris Operator”

• Actually the Noble variant of the Harris Corner Detector
• Lots of other detectors, this is one of the most popular



! > 0
Corner

! < 0
Edge

! ≈ 0
Flat patch

&'()

&'*+

Corner response function
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The Harris operator

Harris 
operator



Harris Detector [Harris88]

• Second moment matrix
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3. Gaussian 
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4. Cornerness function – both eigenvalues are strong

har5. Non-maxima suppression
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(optionally, blur first)



Weighting the derivatives

• In practice, using a simple window W doesn’t work too well

• Instead, we’ll weight each derivative value based on its distance from 
the center pixel



Harris detector example



f value (red high, blue low)



Threshold (f > value) 



Find local maxima of f



Harris features (in red)


