
Correspondence: Feature
detection

A general pipeline for correspondence

1. If sparse correspondences are enough, choose points for which we
will search for correspondences (feature points)

2. For each point (or every pixel if dense correspondence), describe
point using a feature descriptor

3. Find best matching descriptors across two images (feature
matching)

4. Use feature matches to perform downstream task, e.g., pose
estimation

Characteristics of good feature
points

• Repeatability / invariance
• The same feature point can be found in several images despite

geometric and photometric transformations

• Saliency / distinctiveness
• Each feature point is distinctive
• Fewer ”false” matches

Goal: repeatability
• We want to detect (at least some of) the same points in both images.

• Yet we have to be able to run the detection procedure independently per
image.

No chance to find true matches!

Kristen Grauman

Goal: distinctiveness

• The feature point should be distinctive enough that it is easy to match
• Should at least be distinctive from other patches nearby

????

The aperture problem

The aperture problem

• Individual pixels are ambiguous
• Idea: Look at whole patches!

The aperture problem

• Individual pixels are ambiguous
• Idea: Look at whole patches!

The aperture problem

• Some local neighborhoods are ambiguous

The aperture problem

Corner detection

• Main idea: Translating window should cause large differences in patch
appearance

Corner Detection: Basic Idea
• We should easily recognize the point by looking

through a small window
• Shifting a window in any direction should give a

large change in intensity

“edge”:
no change
along the edge
direction

“corner”:
significant
change in all
directions

“flat” region:
no change in
all directions

Source: A. Efros

Corner detection the math

• Consider shifting the window W
by (u,v)
• how do the pixels in W change?

• Write pixels in window as a vector: W

�0 = [I(0, 0), I(0, 1), . . . , I(n, n)]

�1 = [I(0 + u, 0 + v), I(0 + u, 1 + v), . . . , I(n+ u, n+ v)]

E(u, v) = k�0 � �1k22
=

X

(x,y)2W

(I(x, y)� I(x+ u, y + v))2

Consider shifting the window W by (u,v)
• how do the pixels in W change?
• compare each pixel before and after by

summing up the squared differences (SSD)
• this defines an SSD “error” E(u,v):
! ", $
= &

',(∈*
+ , + ", . + $ − + ,, . 0

• We want E(u,v) to be as high as possible
for all u, v!

Corner detection: the math

W

Taylor Series expansion of I:

If the motion (u,v) is small, then first order approximation is good

Plugging this into the formula on the previous slide…

Small motion assumption

Corner detection: the math

Consider shifting the window W by (u,v)
• define an SSD “error” E(u,v):

W

Corner detection: the math

Consider shifting the window W by (u,v)
• define an “error” E(u,v):

W

• Thus, E(u,v) is locally approximated as a quadratic error function

A more general formulation

• Maybe all pixels in the patch are not equally important
• Consider a “window function” !(#, %) that acts as weights
• ' (,) = ∑ ,,- ∈/ !(#, %) 0 # + (, % +) − 0 #, % 3

• Case till now:
• w(x,y) = 1 inside the window, 0 otherwise

Using a window function

• Change in appearance of window w(x,y) for the shift [u,v]:

[]2
,

(,) (,) (,) (,)
x y

E u v w x y I x u y v I x y= + + -å

IntensityShifted
intensity

Window
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside

Source: R. Szeliski

Redoing the derivation using a window
function
! ", $ = &

',(∈*
+(-, .) 0 - + ", . + $ − 0 -, . 3

≈ &
',(∈*

+ -, . 0 -, . + "0' -, . + $0(-, . − 0 -, . 3

= &
',(∈*

+ -, . "0' -, . + $0(-, .
3

= &
',(∈*

+ -, . ["30' -, . 3 + $30(-, . 3 + 2"$0' -, . 0(-, .]

Redoing the derivation using a window
function
•

! ", $ ≈ &
',(∈*

+ ,, - ["/0' ,, - / + $/0(,, - / + 2"$0' ,, - 0(,, -]

= 5"/ + 26"$ + 7$/
5 = &

',(∈*
+ ,, - 0' ,, - /

6 = &
',(∈*

+ ,, - 0' ,, - 0((,, -)

7 = &
',(∈*

+ ,, - 0(,, - /

The second moment matrix

Second moment matrix

M

The second moment matrix

Second moment matrix

M

Recall that we want E(u,v) to be as large as possible
for all u,v

What does this mean in terms of M?

Flat patch:

M

M =

0 0
0 0

�

E(u, v) = 0 8u, v

M

u
v

�
=

0
0

�

Vertical edge:

M

M

E(0, v) = 0 8v

M

0
v

�
=

0
0

�

Horizontal edge:

MM

M

M

u
0

�
=

0
0

�

E(u, 0) = 0 8u

What about edges in arbitrary orientation?

E(u, v) ⇡
⇥
u v

⇤
M

u
v

�

M

u
v

�
=

0
0

�
, E(u, v) = 0

Solutions to Mx = 0 are directions for which E
is 0: window can slide in this direction
without changing appearance

E(u, v) ⇡
⇥
u v

⇤
M

u
v

�

Solutions to Mx = 0 are directions for which E
is 0: window can slide in this direction
without changing appearance

For corners, we want no such directions to
exist

u v

E(u,v)
E(u,v) E(u,v) E(u,v)

v v vu u u

Eigenvalues and eigenvectors of M

• !" = 0 ⇒ !" = &": x is an eigenvector of M with
eigenvalue 0
• M is 2 x 2, so it has 2 eigenvalues (&()*, &(,-) with

eigenvectors ("()*, "(,-)
• / "()* = "()*0 !"()* = &()*||"()*||2 = &()*

(eigenvectors have unit norm)
• / "(,- = "(,-0 !"(,- = &(,-||"(,-||2 = &(,-

Eigenvalues and eigenvectors of M

Eigenvalues and eigenvectors of M
• Define shift directions with the smallest and largest change in error
• xmax = direction of largest increase in E
• lmax = amount of increase in direction xmax

• xmin = direction of smallest increase in E
• lmin = amount of increase in direction xmin

xmin

xmax
M

M

E(u, v) ⇡
⇥
u v

⇤
M

u
v

�

!"#$ ≈ !"&' ≫ 0
E very high in all directions

Corner

!"#$ ≫ !"&', !"&' ≈ 0
E remains close to 0
along +"&'

Edge!"#$, !"&' are small;
E is almost 0 in all
directions Flat patch

!"&'

!"#$

Interpreting the eigenvalues

Computing the second moment matrix
efficiently

• Window function w(x,y) typically a
Gaussian centered on the window

• ! ", $ = &'
()(* +
,+ ' -)-* +

,+

• Need to compute this matrix
efficiently for every window location

Computing the second moment matrix
efficiently

• Step 1: Place k x k window
• Step 2: Compute ∑",$∈&' (,) *" (,) + =
∑",$ -.

/0/1 2
32 . 4041 2

32 *" (,) + (similarly other terms)
• This can be expressed as a convolution!

Computing the second moment matrix

• Compute image gradients !", !$ (both of these are images)
• Might want to blur with a Gaussian before doing this. Why?

• Compute !"%, !$%, !"!$ (these are images too)
• Convolve with windowing function (typically Gaussian)
• Assemble second moment matrix at every pixel

Corner detection: the math
How are lmax, xmax, lmin, and xmin relevant for feature detection?

• Need a feature scoring function
Want E(u,v) to be large for small shifts in all directions

• the minimum of E(u,v) should be large, over all unit vectors [u v]
• this minimum is given by the smaller eigenvalue (lmin) of M

Corner detection summary
Here’s what you do

• Compute the gradient at each point in the image
• Create the M matrix from the entries in the gradient
• Compute the eigenvalues
• Find points with large response (lmin > threshold)
• Choose those points where lmin is a local maximum as features

Corner detection summary
Here’s what you do

• Compute the gradient at each point in the image
• Create the H matrix from the entries in the gradient
• Compute the eigenvalues.
• Find points with large response (lmin > threshold)
• Choose those points where lmin is a local maximum as features

The Harris operator

lmin is a variant of the “Harris operator” for feature detection

• The trace is the sum of the diagonals, i.e., trace(H) = h11 + h22

• Very similar to lmin but less expensive (no square root)
• Called the “Harris Corner Detector” or “Harris Operator”

• Actually the Noble variant of the Harris Corner Detector
• Lots of other detectors, this is one of the most popular

! > 0
Corner

! < 0
Edge

! ≈ 0
Flat patch

&'()

&'*+

Corner response function
2

2121
2)()(trace)det(llalla +-=-= MMR

The Harris operator

Harris
operator

Harris Detector [Harris88]

• Second moment matrix

ú
ú
û

ù

ê
ê
ë

é
*=

)()(
)()(

)(),(2

2

DyDyx

DyxDx
IDI III

III
g

ss
ss

sssµ

43

1. Image
derivatives

2. Square of
derivatives

3. Gaussian
filter g(sI)

Ix Iy

Ix2 Iy2 IxIy

g(Ix2) g(Iy2) g(IxIy)

222222)]()([)]([)()(yxyxyx IgIgIIgIgIg +-- a

=-=])),([trace()],(det[2
DIDIhar ssµassµ

4. Cornerness function – both eigenvalues are strong

har5. Non-maxima suppression

1 2

1 2

det
trace

M
M

l l
l l

=
= +

(optionally, blur first)

Weighting the derivatives

• In practice, using a simple window W doesn’t work too well

• Instead, we’ll weight each derivative value based on its distance from
the center pixel

Harris detector example

f value (red high, blue low)

Threshold (f > value)

Find local maxima of f

Harris features (in red)

