Fourier Transforms

Fourier transform for 1D images

- A 1D image with N pixels is a vector of size N
- Every basis has N pixels
- There must be N basis elements
- n-th element of k-th basis in standard basis

•
$$E_k(n) = \begin{cases} 1 & if \ k = n \\ 0 & otherwise \end{cases}$$

• n-th element of k-th basis in Fourier basis

•
$$B_k(n) = e^{\frac{i2\pi kn}{N}}$$

Fourier transform for 1D images

- Converting from standard basis to Fourier basis = Fourier transform $V(k) = \sum_{k=1}^{k} \frac{i2\pi kn}{k}$
 - $X(k) = \sum_{n} x(n) e^{-\frac{n}{N}}$
 - Note that can be written as a matrix multiplication with X and x as vectors
 X = Bx
- Convert from Fourier basis to standard basis

•
$$x(n) = \sum_{k} X(k) e^{\frac{i2\pi kn}{N}}$$

Fourier transform

- Problem: basis is complex, but signal is real?
- Combine a pair of conjugate basis elements

•
$$B_{N-k}(n) = e^{\frac{i2\pi(N-k)n}{N}} = e^{i2\pi n - \frac{i2\pi kn}{N}} = e^{-\frac{i2\pi kn}{N}} = B_{-k}(n)$$

- Consider $B_{-N/2}$ to $B_{N/2}$ as basis elements
- Real signals will have same coefficients for B_k and B_{-k}

Visualizing the Fourier basis for 1D images

impulse

Fourier transform for images

- Images are 2D arrays
- Fourier basis for 1D array indexed by frequence
- Fourier basis elements are indexed by 2 spatial frequencies
- (i,j)th Fourier basis for N x N image
 - Has period N/i along x
 - Has period N/j along y

•
$$B_{k,l}(x,y) = e^{\frac{2\pi ikx}{N} + \frac{2\pi ily}{N}}$$

= $\cos\left(\frac{2\pi kx}{N} + \frac{2\pi ly}{N}\right) + i\sin\left(\frac{2\pi kx}{N} + \frac{2\pi ly}{N}\right)$

Visualizing the Fourier basis for images

Visualizing the Fourier transform

- Given NxN image, there are NxN basis elements
- Fourier coefficients can be represented as an NxN image

Converting to and from the Fourier basis

- Given an image f, Fourier coefficients F
- How do we get f from F?
 - $f = \sum_{k,l} F(k,l) B_{k,l}$
 - $f(m,n) = \sum_{k,l} F(k,l) e^{i\left(\frac{2\pi km}{N} + \frac{2\pi ln}{N}\right)}$
 - "Inverse Fourier Transform"
- How do we get F from f?

•
$$F(k,l) = \sum_{m,n} f(m,n) e^{-i\left(\frac{2\pi km}{N} + \frac{2\pi iln}{N}\right)}$$

• "Fourier Transform"

- Think of image in terms of low and high frequency information
- Low frequency: large scale structure, no details
- High frequency: fine structure

Removing high frequency components looks like blurring. Is there more to this relationship?

Dual domains

- Image: Spatial domain
- Fourier Transform: Frequency domain
 - Amplitudes are called spectrum
- For any transformations we do in spatial domain, there are corresponding transformations we can do in the frequency domain
- And vice-versa

Dual domains

• *Convolution* in spatial domain = *Point-wise multiplication* in frequency domain

$$h = f * g$$
$$H = FG$$

Convolution in frequency domain = Point-wise multiplication in spatial domain

impulse

Signal

"sinc" = sin(x)/x

Fourier transform

"sinc" =
$$sin(x)/x$$

Signal

Fourier transform

Gaussian

Fourier transform

Gaussian

Signal

Gaussian

40

Image

Fourier transform

Image

Fourier transform

Detour: Time complexity of convolution

- Image is w x h
- Filter is k x k
- Every entry takes O(k²) operations
- Number of output entries:
 - (w+k-1)(h+k-1) for full
 - wh for same
- Total time complexity:
 - O(whk²)

Optimization: separable filters

- basic alg. is $O(r^2)$: large filters get expensive fast!
- definition: w(x,y) is *separable* if it can be written as:

$$w(i,j) = u(i)v(j)$$

- Write u as a k x 1 filter, and v as a 1 x k filter
- Claim: w = u * v

u_1v_1	u_1v_2	u_1v_3
u_2v_1	u_2v_2	u_2v_3
u_3v_1		

u_1v_1	u_1v_2	u_1v_3
u_2v_1	u_2v_2	u_2v_3
u_3v_1	u_3v_2	

$$w * f = (u * v) * f$$
$$= u * (v * f)$$

- Time complexity of original : O(whk²)
- Time complexity of separable version : O(whk)