
Fourier Transforms



Fourier transform for 1D images

• A 1D image with N pixels is a vector of size N
• Every basis has N pixels
• There must be N basis elements
• n-th element of k-th basis in standard basis
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Fourier transform for 1D images

• Converting from standard basis to Fourier basis = Fourier transform
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• Note that can be written as a matrix multiplication with X and x as vectors
• ! = 0&

• Convert from Fourier basis to standard basis
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Fourier transform

• Problem: basis is complex, but signal is real?
• Combine a pair of conjugate basis elements
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• Consider !#"/0 to !"/0 as basis elements
• Real signals will have same coefficients for !$ and !#$



Visualizing the Fourier basis for 1D images
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Fourier transform for images

• Images are 2D arrays
• Fourier basis for 1D array indexed by frequence
• Fourier basis elements are indexed by 2 spatial frequencies
• (i,j)th Fourier basis for N x N image
• Has period N/i along x
• Has period N/j along y
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Visualizing the Fourier basis for images
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Visualizing the Fourier transform

• Given NxN image, there are NxN basis elements
• Fourier coefficients can be represented as an NxN image



Converting to and from the Fourier basis

• Given an image f, Fourier coefficients F
• How do we get f from F?
• ! = ∑$,& ' (, ) *$,&
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• “Inverse Fourier Transform”
• How do we get F from f?
• ' (, ) = ∑7,8 ! +, , -9.
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• “Fourier Transform”



Why Fourier transforms?

• Think of image in terms of low and high frequency information
• Low frequency: large scale structure, no details
• High frequency: fine structure



Why Fourier transforms?



Why Fourier transforms?



Why Fourier transforms?

Removing high frequency components looks like 
blurring. Is there more to this relationship?



Dual domains 

• Image: Spatial domain

• Fourier Transform: Frequency domain
• Amplitudes are called spectrum

• For any transformations we do in spatial domain, there are 
corresponding transformations we can do in the frequency 
domain
• And vice-versa

Spatial Domain



Dual domains

• Convolution in spatial domain = Point-wise multiplication in frequency 
domain

• Convolution in frequency domain = Point-wise multiplication in spatial 
domain

h = f ⇤ g
H = FG



Signal Fourier 
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Signal Fourier 
transform

box “sinc” = sin(x)/x

“sinc” = sin(x)/x box



Signal Fourier 
transform

Gaussian Gaussian



Signal Fourier 
transform

Gaussian Gaussian



Image Fourier 
transform



Image Fourier 
transform



Detour: Time complexity of convolution

• Image is w x h
• Filter is k x k
• Every entry takes O(k2) operations
• Number of output entries:
• (w+k-1)(h+k-1) for full
• wh for same

• Total time complexity: 
• O(whk2)



Optimization: separable filters
• basic alg. is O(r2): large filters get expensive fast!
• definition: w(x,y) is separable if it can be written as:

• Write u as a k x 1 filter, and v as a 1 x k filter
• Claim: 
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Separable filters

• Time complexity of original : O(whk2)
• Time complexity of separable version : O(whk)


