
Fourier Transforms

Fourier transform for 1D images

• A 1D image with N pixels is a vector of size N
• Every basis has N pixels
• There must be N basis elements
• n-th element of k-th basis in standard basis

• !" # = % 1 '() = #
0 +,ℎ./0'1.

• n-th element of k-th basis in Fourier basis
• 2" # = .

34567
8

Fourier transform for 1D images

• Converting from standard basis to Fourier basis = Fourier transform
• ! " = ∑%& ' ()

*+,-.
/

• Note that can be written as a matrix multiplication with X and x as vectors
• ! = 0&

• Convert from Fourier basis to standard basis
• & ' = ∑1! " (

*+,-.
/

Fourier transform

• Problem: basis is complex, but signal is real?
• Combine a pair of conjugate basis elements

• !"#$ n = '
()* +,- .

+ = '/012 #
()*-.
+ = '#

()*-.
+ = !#$ 3

• Consider !#"/0 to !"/0 as basis elements
• Real signals will have same coefficients for !$ and !#$

Visualizing the Fourier basis for 1D images

Signal Fourier
transform

cos
impulse

impulse cos

Fourier transform for images

• Images are 2D arrays
• Fourier basis for 1D array indexed by frequence
• Fourier basis elements are indexed by 2 spatial frequencies
• (i,j)th Fourier basis for N x N image
• Has period N/i along x
• Has period N/j along y

• !",$ %, & = (
)*+,-
. /)*+01.

= cos 267%
8 + 26:&8 + ; sin (267%8 + 26:&8)

Visualizing the Fourier basis for images
!"," !$,%&

!"&,"!&,&

Visualizing the Fourier transform

• Given NxN image, there are NxN basis elements
• Fourier coefficients can be represented as an NxN image

Converting to and from the Fourier basis

• Given an image f, Fourier coefficients F
• How do we get f from F?
• ! = ∑$,& ' (,) *$,&
• ! +, , = ∑$,& ' (,) -.

/012
3 4/0563

• “Inverse Fourier Transform”
• How do we get F from f?
• ' (,) = ∑7,8 ! +, , -9.

/012
3 4/0:563

• “Fourier Transform”

Why Fourier transforms?

• Think of image in terms of low and high frequency information
• Low frequency: large scale structure, no details
• High frequency: fine structure

Why Fourier transforms?

Why Fourier transforms?

Why Fourier transforms?

Removing high frequency components looks like
blurring. Is there more to this relationship?

Dual domains

• Image: Spatial domain

• Fourier Transform: Frequency domain
• Amplitudes are called spectrum

• For any transformations we do in spatial domain, there are
corresponding transformations we can do in the frequency
domain
• And vice-versa

Spatial Domain

Dual domains

• Convolution in spatial domain = Point-wise multiplication in frequency
domain

• Convolution in frequency domain = Point-wise multiplication in spatial
domain

h = f ⇤ g
H = FG

Signal Fourier
transform

cos
impulse

impulse cos

Signal Fourier
transform

box “sinc” = sin(x)/x

“sinc” = sin(x)/x box

Signal Fourier
transform

Gaussian Gaussian

Signal Fourier
transform

Gaussian Gaussian

Image Fourier
transform

Image Fourier
transform

Detour: Time complexity of convolution

• Image is w x h
• Filter is k x k
• Every entry takes O(k2) operations
• Number of output entries:
• (w+k-1)(h+k-1) for full
• wh for same

• Total time complexity:
• O(whk2)

Optimization: separable filters
• basic alg. is O(r2): large filters get expensive fast!
• definition: w(x,y) is separable if it can be written as:

• Write u as a k x 1 filter, and v as a 1 x k filter
• Claim:

Separable filters
u1
u2
u3

v1 v2 v3*

u1
u2
u3

u3
u2
u1

u1v1

Separable filters
u1
u2
u3

v1 v2 v3*

u1
u2
u3

u3
u2
u1

u1v1 u1v2

Separable filters
u1
u2
u3

v1 v2 v3*

u1
u2
u3

u3
u2
u1

u1v1 u1v2 u1v3

Separable filters
u1
u2
u3

v1 v2 v3*

u1
u2
u3

u3
u2
u1

u1v1 u1v2 u1v3

u2v1

Separable filters
u1
u2
u3

v1 v2 v3*

u1
u2
u3

u3
u2
u1

u1v1 u1v2 u1v3

u2v1 u2v2

Separable filters
u1
u2
u3

v1 v2 v3*

u1
u2
u3

u3
u2
u1

u1v1 u1v2 u1v3

u2v1 u2v2 u2v3

Separable filters
u1
u2
u3

v1 v2 v3*

u1
u2
u3

u3
u2
u1

u1v1 u1v2 u1v3

u2v1 u2v2 u2v3

u3v1

Separable filters
u1
u2
u3

v1 v2 v3*

u1
u2
u3

u3
u2
u1

u1v1 u1v2 u1v3

u2v1 u2v2 u2v3

u3v1 u3v2

Separable filters
u1
u2
u3

v1 v2 v3*

u1
u2
u3

u3
u2
u1

u1v1 u1v2 u1v3

u2v1 u2v2 u2v3

u3v1 u3v2 u3v3

w

Separable filters

• Time complexity of original : O(whk2)
• Time complexity of separable version : O(whk)

