Fourier transforms

Gaussian filter

$21 \times 21, \sigma=0.5$

$21 \times 21, \sigma=1$

$21 \times 21, \sigma=3$

Difference of Gaussians

$21 \times 21, \sigma=1$

$21 \times 21, \sigma=3$

Images have structure at various

 scales

Images have structure at various scales

- Let's formalize this!

A change of basis

- Want to write image I as:

$$
I=a_{1} B_{1}+a_{2} B_{2}+\ldots+a_{n} B_{n}
$$

- Basis: B_{1}, \ldots, B_{n}
- What should basis be?

A change of basis

- Each basis should capture structure at a particular scale
- Coarse structure: Corresponding to large regions of the image
- Fine structure: corresponding to individual pixels as details
- One such basis: Fourier basis

Fourier bases for 1D signals

- Consider sines and cosines of various frequencies as basis

A combination of frequencies

Fourier transform

- Can we figure out the canonical single-frequency signals that make up a complex signal?
- Yes!
- Can any signal be decomposed in this way?
- Yes!

Idea of Fourier Analysis

- Every signal (doesn't matter what it is)
- Sum of sine/cosine waves

Idea of Fourier Analysis

- Every signal (doesn't matter what it is)
- Sum of sine/cosine waves

(b)

A box-like example

Fourier bases for 1D signals

- Not exactly sines and cosines, but complex variants

$$
\begin{aligned}
& e^{i x}=\cos (x)+i \sin (x) \\
& e^{i 2 \pi \nu t}=\cos (2 \pi \nu t)+i \sin (2 \pi \nu t)
\end{aligned}
$$

- Euler's formula
- v is the frequency
- Period is $\frac{1}{v}$

Fourier basis for 1D signals

- Consider a 1D array of size N
- k-th element of Fourier basis:
- Has period $\frac{N}{k}$
- Varies between period of N (large scale structure ranging over entire array)
- And period of 1 (fine scale structure ranging over individual elements)
- $B_{k}(n)=e^{\frac{2 \pi i k n}{N}}=\cos \left(\frac{2 \pi k n}{N}\right)+i \sin \left(\frac{2 \pi k n}{N}\right)$

Fourier transform

- Consider any 1D signal x with N entries
- It can be expressed as a combination of Fourier basis elements:
- $x=a_{0}(x) B_{0}+a_{1}(x) B_{1}+\ldots+a_{N-1}(x) B_{N-1}$
- x can be represented using N Fourier coefficients:
- $\mathrm{X}=\left[a_{0}(x), a_{1}(x), \ldots, a_{N-1}(x)\right]$
- Fourier transform of x is X
- Inverse Fourier transform of X is x

Fourier transform

- Problem: basis is complex, but signal is real?
- Combine a pair of conjugate basis elements
- $B_{N-k}(\mathrm{n})=e^{\frac{2 \pi i(N-k) n}{N}}=e^{2 \pi i n-\frac{2 \pi i k n}{N}}=e^{-\frac{2 \pi i k n}{N}}=$ $B_{-k}(n)$
- Consider $B_{-N / 2}$ to $B_{N / 2}$ as basis elements
- Real signals will have same coefficients for B_{k} and B_{-k}

Fourier transform

- What is B_{0} ?
- $B_{0}=e^{2 \pi i 0 n / N}=1$
- Coefficient at 0 acts as a "constant bias"
- All other basis elements average out to 0
- So average must come from 0 coefficient
- "DC component"

