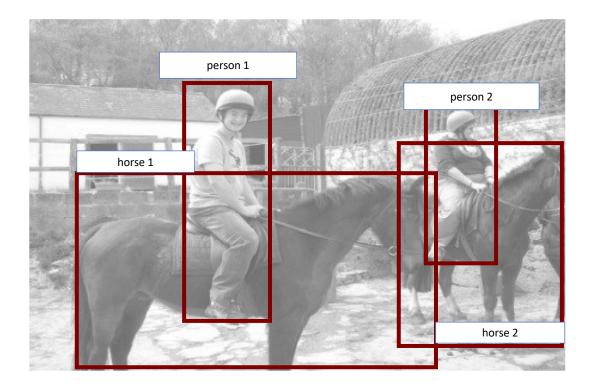
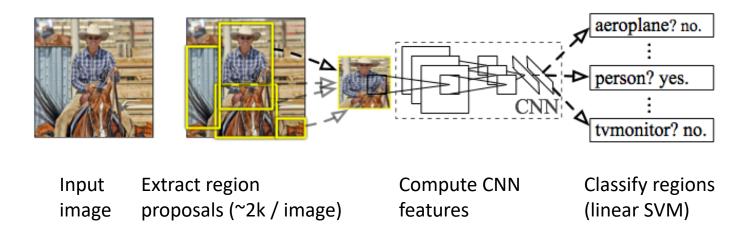
Object detection

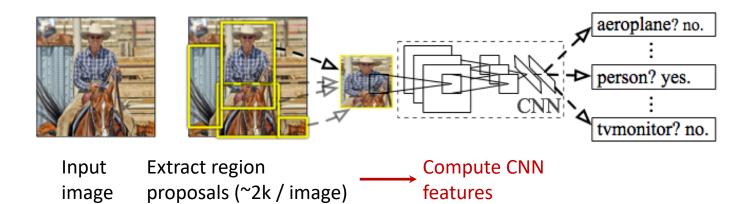
The Task



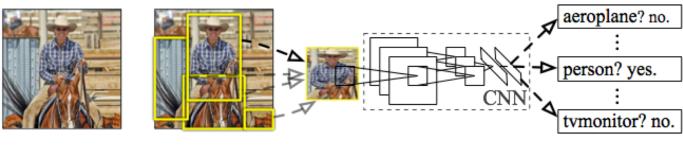
R-CNN: Regions with CNN features



Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation **R. Girshick**, J. Donahue, T. Darrell, J. Malik IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014



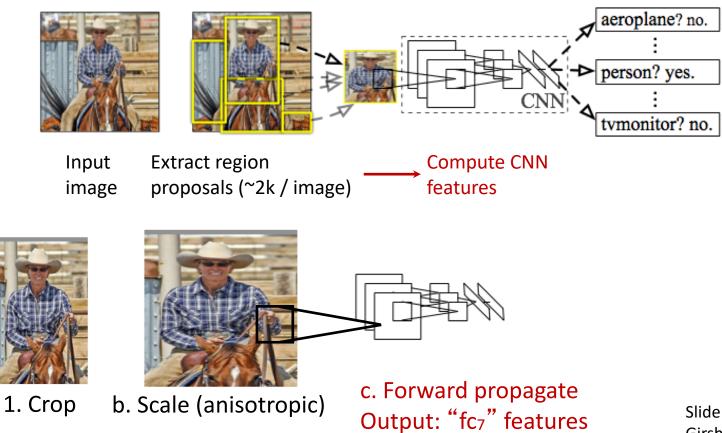
a. Crop

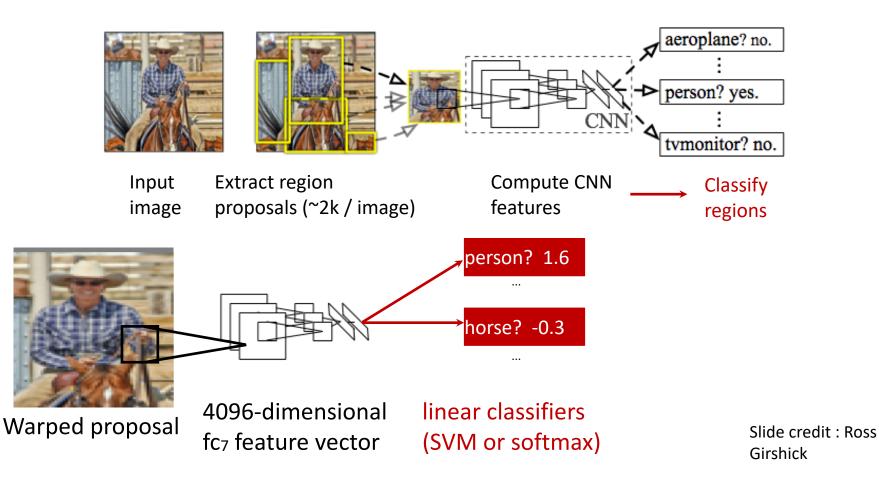


Input Extract region image proposals (~2k / image) Compute CNN features

a. Crop

227 x 227





Step 4: Object proposal refinement

Linear regression

on CNN features

Original proposal

Predicted object bounding box

Bounding-box regression

R-CNN results on PASCAL

	VOC 2007	VOC 2010
DPM v5 (Girshick et al. 2011)	33.7%	29.6%
UVA sel. search (Uijlings et al. 2013)		35.1%
Regionlets (Wang et al. 2013)	41.7%	39.7%
SegDPM (Fidler et al. 2013)		40.4%

Reference systems

metric: mean average precision (higher is better

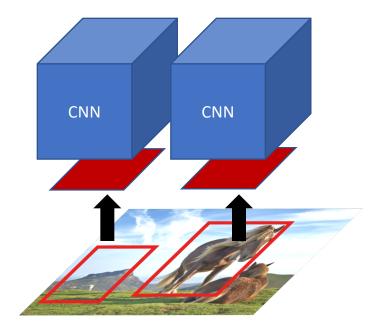
R-CNN results on PASCAL

	VOC 2007	VOC 2010
DPM v5 (Girshick et al. 2011)	33.7%	29.6%
UVA sel. search (Uijlings et al. 2013)		35.1%
Regionlets (Wang et al. 2013)	41.7%	39.7%
SegDPM (Fidler et al. 2013)		40.4%
R-CNN	54.2%	50.2%
R-CNN + bbox regression	58.5%	53.7%

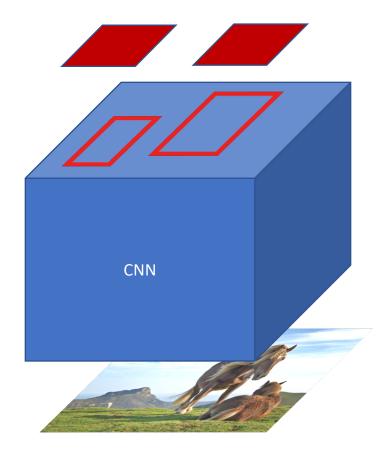
Training R-CNN

- Train convolutional network on ImageNet classification
- Finetune on detection
 - Classification problem!
 - Proposals with IoU > 50% are positives
 - Sample fixed proportion of positives in each batch because of imbalance

Speeding up R-CNN

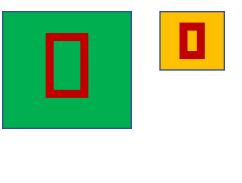


Speeding up R-CNN



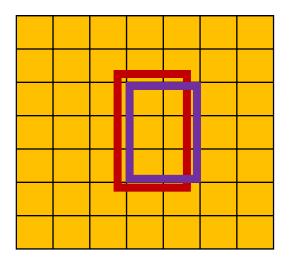
- How do we crop from a feature map?
- Step 1: Resize boxes to account for subsampling



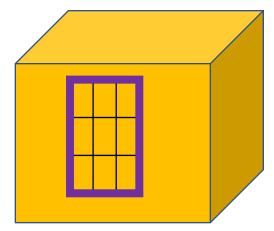


Fast R-CNN. Ross Girshick. In ICCV 2015

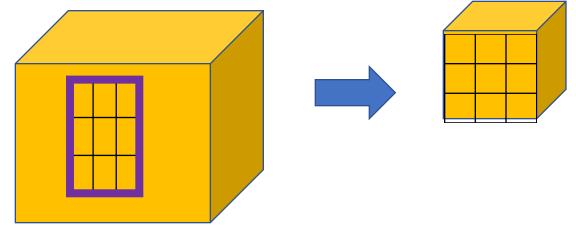
- How do we crop from a feature map?
- Step 2: Snap to feature map grid



- How do we crop from a feature map?
- Step 3: Place a grid of fixed size



- How do we crop from a feature map?
- Step 4: Take max in each cell

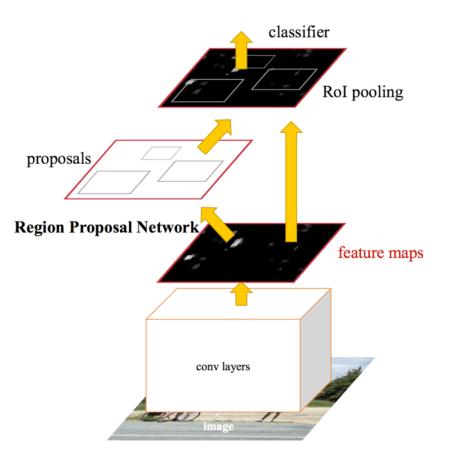


	Fast R-CNN	R-CNN
Train time (h)	9.5	84
Speedup	8.8x	1x
Test time / image	0.32s	47.0s
Speedup	146x	1x
mean AP	66.9	66.0

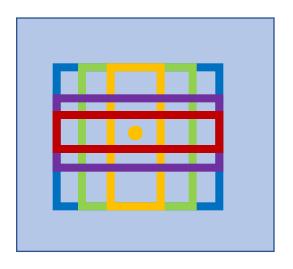
- Bottleneck remaining (not included in time):
 - Object proposal generation
- Slow
 - Requires segmentation
 - O(1s) per image

- Can we produce *object proposals* from convolutional networks?
- A change in intuition
 - Instead of using grouping
 - Recognize likely objects?
- For every possible box, score if it is likely to correspond to an object

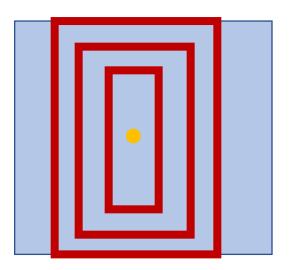
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. S. Ren, K. He, R. Girshick, J. Sun. In *NIPS* 2015.



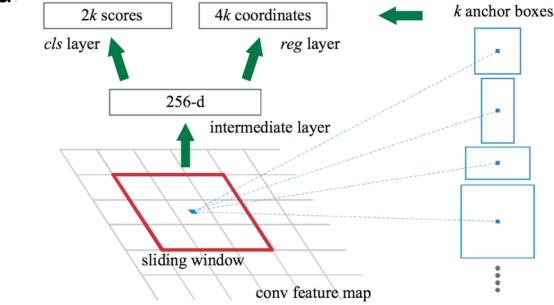
• At each location, consider boxes of many different sizes and aspect ratios



• At each location, consider boxes of many different sizes and aspect ratios



• At each location, consider boxes of many different sizes a



- s scales * a aspect ratios = sa anchor boxes
- Use convolutional layer on top of filter map to produce sa scores
- Pick top few boxes as proposals

	mean AP (PASCAL VOC)
Fast R-CNN	65.7
Faster R-CNN	67.0

Impact of Feature Extractors

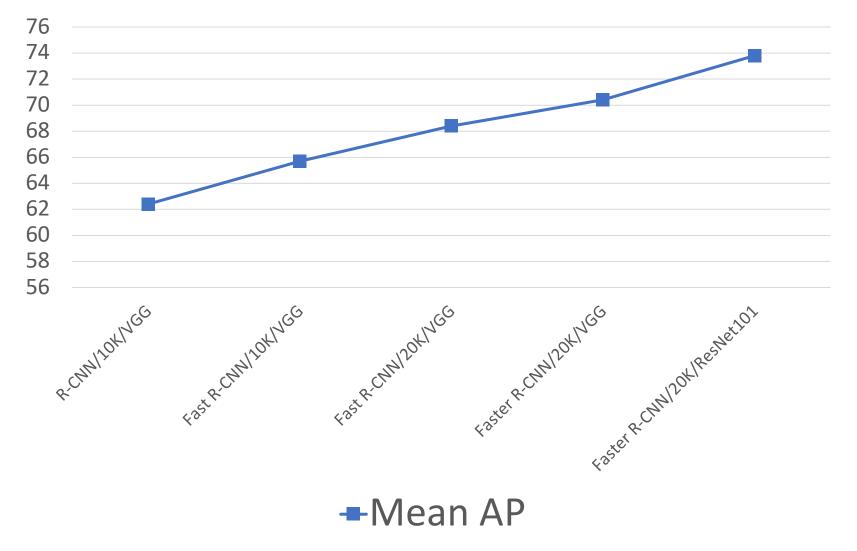
ConvNet	mean AP (PASCAL VOC)
VGG	70.4
ResNet 101	73.8

Impact of Additional Data

Method	Training data	mean AP (PASCAL VOC 2012 Test)
Fast R-CNN	VOC 12 Train (10K)	65.7
Fast R-CNN	VOC07 Trainval + VOC 12 Train	68.4
Faster R-CNN	VOC 12 Train (10K)	67.0
Faster R-CNN	VOC07 Trainval + VOC 12 Train	70.4

The R-CNN family of detectors

Mean AP

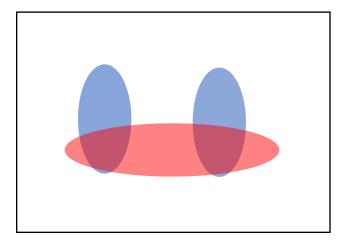


Semantic Segmentation

The Task

Evaluation metric

- Pixel classification!
- Accuracy?
 - Heavily unbalanced
 - Common classes are overemphasized
- Intersection over Union
 - Average across classes and images
- Per-class accuracy
 - Compute accuracy for every class and then average



Things vs Stuff

THINGS

- Person, cat, horse, etc
- Constrained shape
- Individual instances with separate identity
- May need to look at objects

STUFF

- Road, grass, sky etc
- Amorphous, no shape
- No notion of instances
- Can be done at pixel level
- "texture"

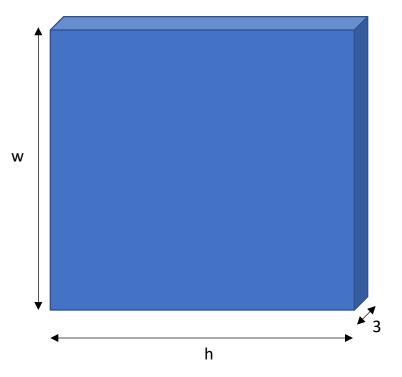
Challenges in data collection

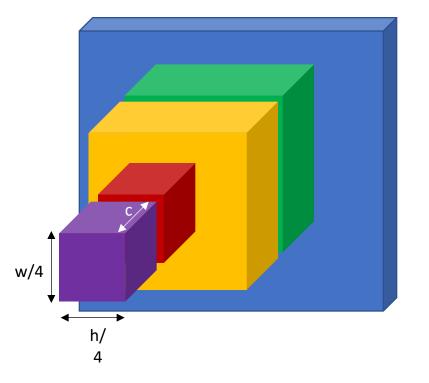
- Precise localization is hard to annotate
- Annotating every pixel leads to heavy tails
- Common solution: annotate few classes (often things), mark rest as "Other"
- Common datasets: PASCAL VOC 2012 (~1500 images, 20 categories), COCO (~100k images, 20 categories)

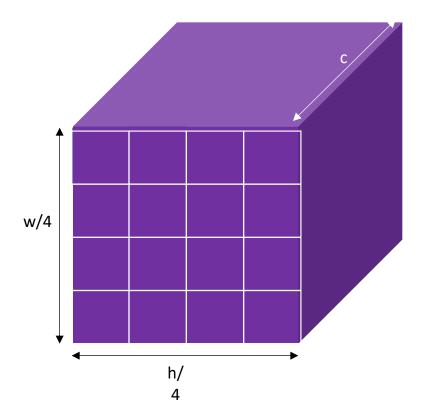
Pre-convnet semantic segmentation

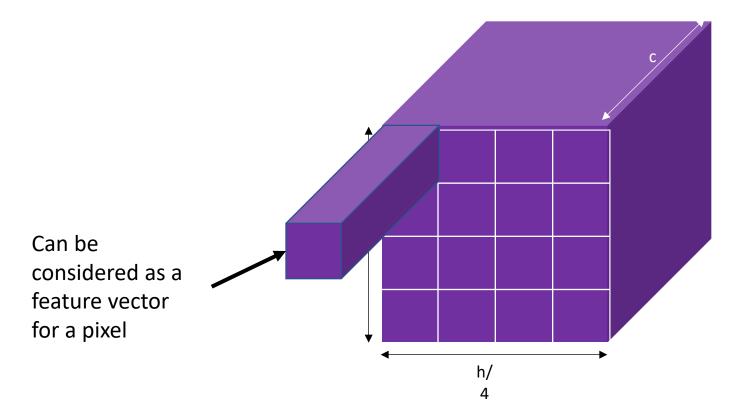
- Things
 - Do object detection, then segment out detected objects
- Stuff
 - "Texture classification"
 - Compute histograms of filter responses
 - Classify local image patches

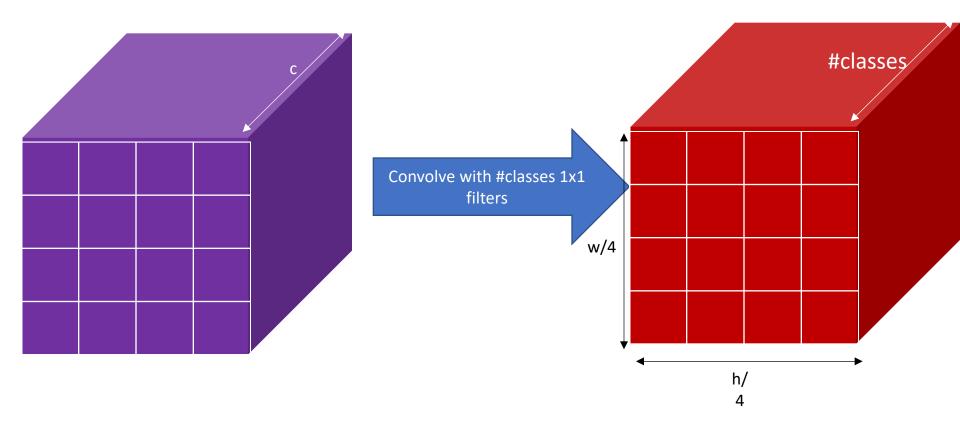
Semantic segmentation using convolutional networks









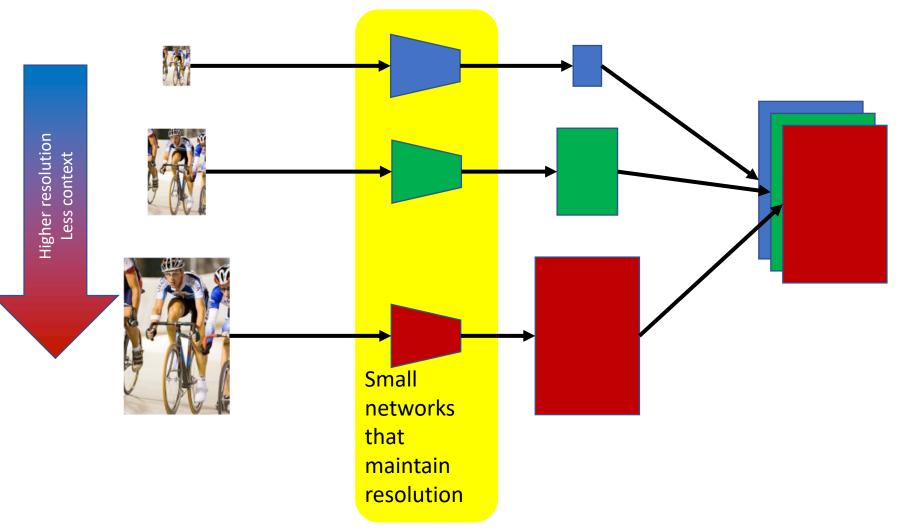


- Pass image through convolution and subsampling layers
- Final convolution with #classes outputs
- Get scores for *subsampled* image
- Upsample back to original size

The resolution issue

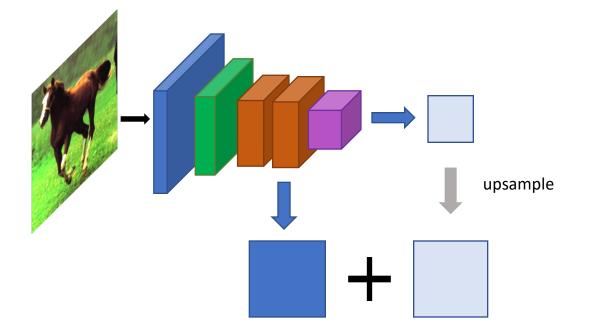
- Problem: Need fine details!
- Shallower network / earlier layers?
 - Deeper networks work better: more abstract concepts
 - Shallower network => Not very semantic!
- Remove subsampling?
 - Subsampling allows later layers to capture larger and larger patterns
 - Without subsampling => Looks at only a small window!

Solution 1: Image pyramids



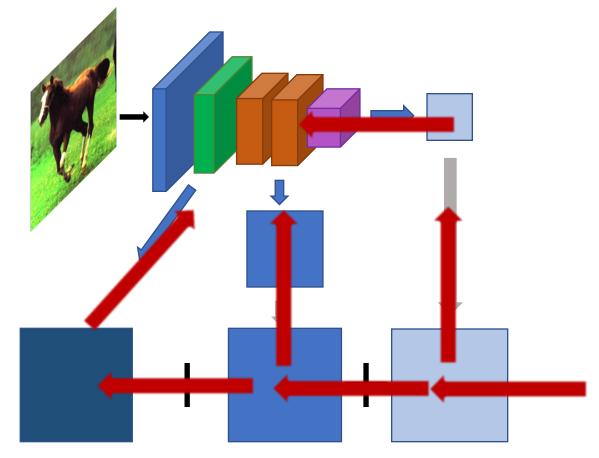
Learning Hierarchical Features for Scene Labeling. Clement Farabet, Camille Couprie, Laurent Najman, Yann LeCun. In *TPAMI*, 2013

Solution 2: Skip connections



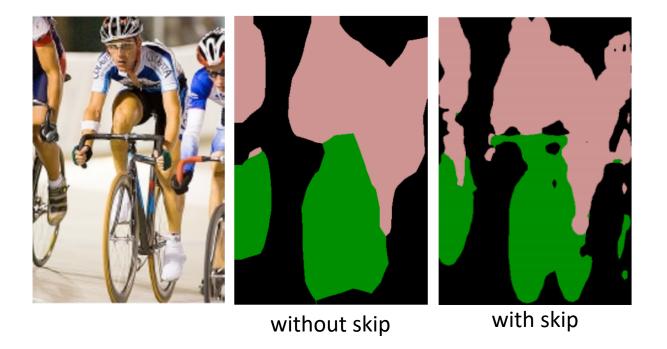
Compute class scores at multiple layers, then upsample and add

Solution 2: Skip connections



Red arrows indicate backpropagation

Skip connections



Fully convolutional networks for semantic segmentation. Evan Shelhamer, Jon Long, Trevor Darrell. In CVPR 2015

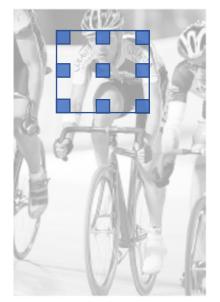
Skip connections

 Problem: early layers not sem Horse

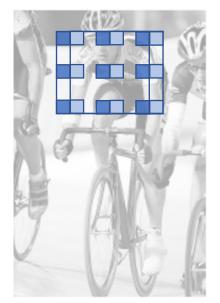
Visualizations from : M. Zeiler and R. Fergus. Visualizing and Understanding Convolutional Networks. In ECCV 2014.

- Need subsampling to allow convolutional layers to capture large regions with small filters
 - Can we do this without subsampling?

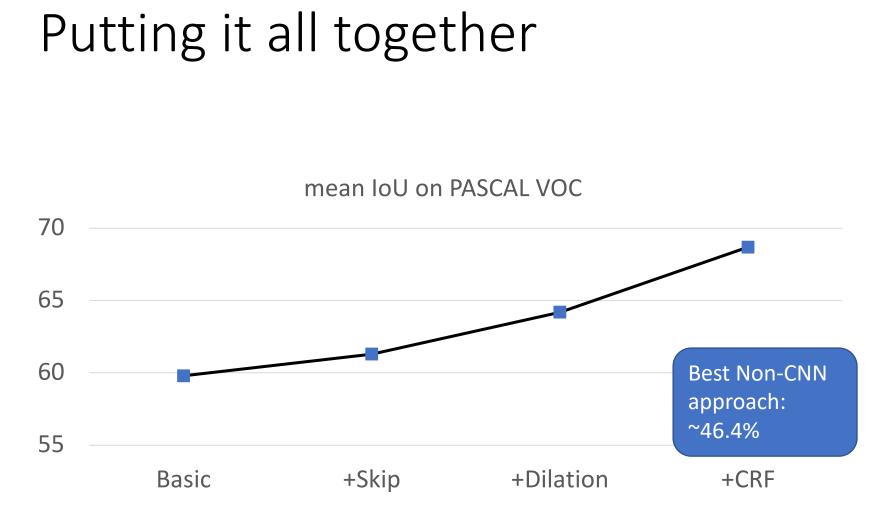
- Need subsampling to allow convolutional layers to capture large regions with small filters
 - Can we do this without subsampling?



- Need subsampling to allow convolutional layers to capture large regions with small filters
 - Can we do this without subsampling?



- Instead of subsampling by factor of 2: dilate by factor of 2
- Dilation can be seen as:
 - Using a much larger filter, but with most entries set to 0
 - Taking a small filter and "exploding" / "dilating" it
- Not panacea: without subsampling, feature maps are much larger: memory issues



Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, Alan Yuille. In *ICLR*, 2015.

Other additions

Method	mean IoU (%)
VGG16 + Skip + Dilation	65.8
ResNet101	68.7
ResNet101 + Pyramid	71.3
ResNet101 + Pyramid + COCO	74.9

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, Alan Yuille. Arxiv 2016.

Image-to-image translation problems

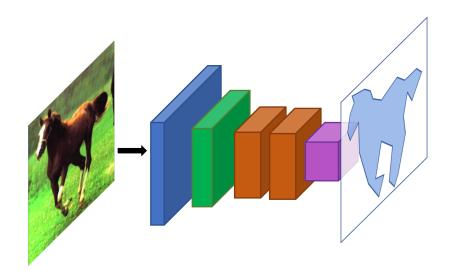


Image-to-image translation problems

- Segmentation
- Optical flow estimation
- Depth estimation
- Normal estimation
- Boundary detection
- ...