Transfer learning with convolutional networks

Challenge winner's accuracy

Transfer learning with convolutional networks

- What do we do for a new image classification problem?
- Key idea:
- Freeze parameters in feature extractor
- Retrain classifier

Transfer learning with convolutional networks

Dataset	Non-Convnet Method	Non-Convnet perf	Pretrained convnet + classifier	Improvement
Caltech 101	MKL	84.3	87.7	+3.4
VOC 2007	SIFT+FK	61.7	79.7	+18
CUB 200	SIFT+FK	18.8	61.0	+42.2
Aircraft	SIFT+FK	61.0	45.0	-16
Cars	SIFT+FK	59.2	36.5	-22.7

Why transfer learning?

- Availability of training data
- Computational cost
- Ability to pre-compute feature vectors and use for multiple tasks
- Con: NO end-to-end learning

Finetuning

Finetuning

Finetuning

Dataset	Non- Convnet Method	Non- Convnet perf	Pretrained convnet + classifier	Finetuned convnet	Improvem ent
Caltech 101	MKL	84.3	87.7	88.4	+4.1
VOC 2007	SIFT+FK	61.7	79.7	82.4	+20.7
CUB 200	SIFT+FK	18.8	61.0	70.4	+51.6
Aircraft	SIFT+FK	61.0	45.0	74.1	+13.1
Cars	SIFT+FK	59.2	36.5	79.8	+20.6

Visualizing convolutional networks

Receptive field

- Which input pixels does a particular unit in a feature map depends on

Receptive field

3×3 receptive field

Receptive field

convolve with 3×3
filter, subsample

Receptive field

7x7 receptive field: union of 9 3×3 fields with stride of 2

with 3×3
filter, subsample by factor 2
3×3 receptive field

with 3×3
filter

Visualizing convolutional networks

- Take images for which a given unit in a feature map scores high
- Identify the receptive field for each.

Rich feature hierarchies for accurate object detection and semantic segmentation. R. Girshick, J. Donahue, T. Darrell, J. Malik. In CVPR, 2014.

Visualizing convolutional networks II

- Block regions of the image and classify

Visualizing and Understanding Convolutional Networks. M. Zeiler and R. Fergus. In ECCV 2014.

Visualizing convolutional networks II

- Image pixels important for classification = pixels when blocked cause misclassification
(d) Classifier, probability of correct class

Object detection

The Task

Datasets

- Face detection
- One category: face
- Frontal faces
- Fairly rigid, unoccluded

Pedestrians

- One category: pedestrians
- Slight pose variations
and small distortions
- Slight pose variations
and small distortions
- Partial occlusions

s Histograms of Oriented Gradients for Human Detection. N. Dalal and B. Triggs. CVPR 2005

PASCAL VOC

- 20 categories
- 10K images
- Large pose variations, heavy occlusions

- Generic scenes
- Cleasned up

Coco

- 80 diverse categories
- 100K images
- Heavy occlusions, many objects per
 image, large scale vardations

Evaluation metric

Matching detections to ground truth

$$
\operatorname{IoU}(A, B)=\frac{|A \cap B|}{|A \cup B|}
$$

Matching detections to ground

 truth- Match detection to most similar ground truth
- highest loU
- If loU > 50\%, mark as correct
- If multiple detections map to same ground truth, mark only one as correct
- Precision = \#correct detections / total detections
- Recall = \#ground truth with matched detections / total ground truth

Tradeoff between precision and

 recall- ML usually gives scores or probabilities, so threshold
- Too low threshold \rightarrow too many detections \rightarrow low precision, high recall
- Too high threshold \rightarrow too few detections \rightarrow high precision, low recall
- Right tradeoff depends on application
- Detecting cancer cells in tissue: need high recall
- Detecting edible mushrooms in forest: need high precision

Average precision

Average precision

Average average precision

- AP marks detections with overlap >50\% as correct
- But may need better localization
- Average AP across multiple overlap thresholds
- Confusingly, still called average precision
- Introduced in COCO

Mean and category-wise AP

- Every category evaluated independently
- Typically report mean AP averaged over all categories
- Confusingly called "mean Average Precision", or "mAP"

Why is detection hard(er)?

- Precise localization

Why is detection hard(er)?

- Much larger impact of pose

Why is detection hard(er)?

- Occlusion makes localization difficult

Why is detection hard(er)?

- Counting

Why is detection hard(er)?

- Small objects

Detection as classification

- Run through every possible box and classify
- How many boxes?
- Every pair of pixels = 1 box
$\binom{N}{2}=O\left(N^{2}\right)$
- For 300×500 image, N
- 2.25×10^{10} boxes!

Idea 1: scanning window

- Fix size
- Can take a few different sizes
- Fixed stride
- Convolution with a filter
- Classic: compute HOG
 features over entire image

Dealing with scale

Dealing with scale

Idea 2: Object proposals

- Use segmentation to produce ${ }^{\sim} 5 \mathrm{~K}$ candidates

Selective Search for Object Recognition
J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, A. W. M. Smeulders In International Journal of Computer Vision 2013.

Idea 2: Object proposals

What makes for effective detection proposals? J. Hosang, R. Benenson, P. Dollar, B. Schiele. In TPAMI

A rapid rise in performance

[Source: http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc20\{07,08,09,10,11,12\}/results/index.html]

Slide credit : Ross
Girshick

Complexity and the plateau

[Source: http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc20\{07,08,09,10,11,12\}/results/index.html]

Slide credit : Ross Girshick

SIFT, HOG, LBP, ...

R-CNN: Regions with CNN

features

Slide credit : Ross
Girshick

R-CNN: Regions with CNN features

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation
R. Girshick, J. Donahue, T. Darrell, J. Malik

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014

Slide credit : Ross
Girshick

R-CNN at test time: Step 2

$\begin{array}{ll}\text { Input } & \begin{array}{l}\text { Extract region } \\ \text { image } \\ \text { proposals }(\sim 2 k / i m a g e)\end{array} \longrightarrow \begin{array}{c}\text { Compute CNN } \\ \text { features }\end{array}\end{array}$

Slide credit : Ross
Girshick

R-CNN at test time: Step 2

$\begin{array}{ll}\text { Input } \\ \text { image } & \begin{array}{l}\text { Extract region } \\ \text { proposals }(\sim 2 k / i m a g e)\end{array} \longrightarrow \begin{array}{c}\text { Compute CNN } \\ \text { features }\end{array}\end{array}$

Slide credit : Ross Girshick

R-CNN at test time: Step 2

$\begin{array}{ll}\text { Input } & \text { Extract region } \\ \text { image } & \text { proposals }(\sim 2 k / \text { image })\end{array} \longrightarrow \begin{aligned} & \text { Compute CNN } \\ & \text { features }\end{aligned}$

1. Crop
b. Scale (anisotropic)
c. Forward propagate

Output: "fc7" features
Slide credit : Ross Girshick

R-CNN at test time: Step 3

Input Extract region
image proposals (~2k / image)

Warped proposal
4096-dimensional linear classifiers fC_{7} feature vector (SVM or softmax)

Slide credit : Ross Girshick

Step 4: Object proposal refinement

Original proposal

Predicted
object bounding box

Bounding-box regression

Slide credit : Ross

Bounding-box regression

Slide credit : Ross
Girshick

R-CNN results on PASCAL

	VOC 2007	VOC 2010
DPM v5 (Girshick et al. 2011)	33.7%	29.6%
UVA sel. search (Uijlings et al. 2013) Regionlets (Wang et al. 2013)	41.7%	35.1%
SegDPM (Fidler et al. 2013)		40.4%

R-CNN results on PASCAL

	VOC 2007	VOC 2010
DPM v5 (Girshick et al. 2011)	33.7%	29.6%
UVA sel. search (Uijlings et al. 2013)		35.1%
Regionlets (Wang et al. 2013)	41.7%	39.7%
SegDPM (Fidler et al. 2013)		40.4%
R-CNN	54.2%	50.2%
R-CNN + bbox regression	58.5%	53.7%

Training R-CNN

- Train convolutional network on ImageNet classification
- Finetune on detection
- Classification problem!
- Proposals with loU > 50\% are positives
- Sample fixed proportion of positives in each batch because of imbalance

Other details - Non-max suppression

How do we deal with multiple detections on the same object?

Other details - Non-max suppression

- Go down the list of detections starting from highest scoring
- Eliminate any detection that overlaps highly with a higher scoring detection
- Separate, heuristic step

