Transfer learning with convolutional networks

Challenge winner's accuracy

Transfer learning with convolutional networks

- What do we do for a new image classification problem?
- Key idea:
 - *Freeze* parameters in feature extractor
 - Retrain classifier

Transfer learning with convolutional networks

Dataset	Non-Convnet Method	Non-Convnet perf	Pretrained convnet + classifier	Improvement
Caltech 101	MKL	84.3	87.7	+3.4
VOC 2007	SIFT+FK	61.7	79.7	+18
CUB 200	SIFT+FK	18.8	61.0	+42.2
Aircraft	SIFT+FK	61.0	45.0	-16
Cars	SIFT+FK	59.2	36.5	-22.7

Why transfer learning?

- Availability of training data
- Computational cost
- Ability to pre-compute feature vectors and use for multiple tasks
- Con: NO end-to-end learning

Finetuning

Finetuning

Initialize with pretrained, then train with low learning rate Bakery

Finetuning

Dataset	Non- Convnet Method	Non- Convnet perf	Pretrained convnet + classifier	Finetune convnet	ed	Improvem ent
Caltech 101	MKL	84.3	87.7	88.4		+4.1
VOC 2007	SIFT+FK	61.7	79.7	82.4		+20.7
CUB 200	SIFT+FK	18.8	61.0	70.4		+51.6
Aircraft	SIFT+FK	61.0	45.0	74.1		+13.1
Cars	SIFT+FK	59.2	36.5	79.8		+20.6

Visualizing convolutional networks

• Which input pixels does a particular unit in a feature map depends on

7x7 receptive field: union of 9 3x3 fields with stride of 2

convolve with 3 x 3 filter, subsample by factor 2	3x3 receptive field	convolve with 3 x 3 filter e	

Visualizing convolutional networks

- Take images for which a given unit in a feature map scores high
- Identify the receptive field for each.

Rich feature hierarchies for accurate object detection and semantic segmentation. R. Girshick, J. Donahue, T. Darrell, J. Malik. In *CVPR*, 2014.

Visualizing convolutional networks II

• Block regions of the image and classify

Visualizing and Understanding Convolutional Networks. M. Zeiler and R. Fergus. In ECCV 2014.

Visualizing convolutional networks II

 Image pixels important for classification = pixels when blocked cause misclassification (d) Classifier, probability

Visualizing and Understanding Convolutional Networks. M. Zeiler and R. Fergus. In ECCV 2014.

Object detection

The Task

Datasets

- Face detection
- One category: face
- Frontal faces
- Fairly rigid, unoccluded

Human Face Detection in Visual Scenes. H. Rowley, S. Baluja, T. Kanade. 1995.

Pedestrians

- One category: pedestrians
- Slight pose variations and small distortions
- Partial occlusions

PASCAL VOC

- 20 categories
- 10K images
- Large pose variations, heavy occlusions
- Generic scenes

Сосо

- 80 diverse categories
- 100K images
- Heavy occlusions, many objects per image, large scale variations

Dataset examples

Evaluation metric

Matching detections to ground truth

Matching detections to ground truth

- Match detection to most similar ground truth
 - highest IoU
- If IoU > 50%, mark as correct
- If multiple detections map to same ground truth, mark only one as correct
- **Precision** = #correct detections / total detections
- Recall = #ground truth with matched detections / total ground truth

Tradeoff between precision and recall

- ML usually gives scores or probabilities, so threshold
- Too low threshold → too many detections → low precision, high recall
- Too high threshold → too few detections → high precision, low recall
- Right tradeoff depends on application
 - Detecting cancer cells in tissue: need high recall
 - Detecting edible mushrooms in forest: need high precision

Average precision

Average precision

Average average precision

- AP marks detections with overlap > 50% as correct
- But may need better localization
- Average AP across multiple overlap thresholds
- Confusingly, still called average precision
- Introduced in COCO

Mean and category-wise AP

- Every category evaluated independently
- Typically report mean AP averaged over all categories
- Confusingly called "mean Average Precision", or "mAP"

• Precise localization

• Much larger impact of pose

Occlusion makes localization difficult

• Counting

• Small objects

Detection as classification

- Run through every possible box and classify
- How many boxes?
 - Every pair of pixels = 1 box

$$\begin{pmatrix} N \\ 2 \end{pmatrix} = O(N^2)$$

- For 300 x 500 image, N
- 2.25 x 10¹⁰ boxes!

Idea 1: scanning window

- Fix size
 - Can take a few different sizes
- Fixed stride
- Convolution with a filter
 - Classic: compute HOG features over entire image

Dealing with scale

Dealing with scale

1.444		<u>7</u>		10	1 mar	
	1A	-		S.C.	F	
			4	Circle State		-
		. Ma		arix.		
		7		1	1.1	

1.000			, a J	4						1		
	11	0	~			-	100		The second			
	A	there a	animitan (1.8		0		and a second			10
		N SU						1 de			a La	1
		2	X	h		X	A.			17	M	The second
	-	2			74	1	11	10	111			1
				1		1	1	1		1	1/	

Idea 2: Object proposals

Use segmentation to produce ~5K candidates

J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, A. W. M. Smeulders In International Journal of Computer Vision 2013.

Idea 2: Object proposals

What makes for effective detection proposals? J. Hosang, R. Benenson, P. Dollar, B. Schiele. In TPAMI

A rapid rise in performance

[Source: http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc20{07,08,09,10,11,12}/results/index.html]

Complexity and the plateau

[Source: http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc20{07,08,09,10,11,12}/results/index.html]

SIFT, HOG, LBP, ...

R-CNN: Regions with CNN features

R-CNN: Regions with CNN features

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation **R. Girshick**, J. Donahue, T. Darrell, J. Malik IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014

a. Crop

Input Extract region image proposals (~2k / image) Compute CNN features

a. Crop

227 x 227

Step 4: Object proposal refinement

Linear regression

on CNN features

Original proposal

Predicted object bounding box

Bounding-box regression

Bounding-box regression

R-CNN results on PASCAL

	VOC 2007	VOC 2010
DPM v5 (Girshick et al. 2011)	33.7%	29.6%
UVA sel. search (Uijlings et al. 2013)		35.1%
Regionlets (Wang et al. 2013)	41.7%	39.7%
SegDPM (Fidler et al. 2013)		40.4%

Reference systems

metric: mean average precision (higher is better

R-CNN results on PASCAL

	VOC 2007	VOC 2010
DPM v5 (Girshick et al. 2011)	33.7%	29.6%
UVA sel. search (Uijlings et al. 2013)		35.1%
Regionlets (Wang et al. 2013)	41.7%	39.7%
SegDPM (Fidler et al. 2013)		40.4%
R-CNN	54.2%	50.2%
R-CNN + bbox regression	58.5%	53.7%

Training R-CNN

- Train convolutional network on ImageNet classification
- Finetune on detection
 - Classification problem!
 - Proposals with IoU > 50% are positives
 - Sample fixed proportion of positives in each batch because of imbalance

Other details - Non-max suppression

How do we deal with multiple detections on the same object?

Other details - Non-max suppression

- Go down the list of detections starting from highest scoring
- Eliminate any detection that overlaps highly with a higher scoring detection
- Separate, heuristic step