
Image Classification



Convolutional networks - Why

• Convolutions
• Reduce parameters
• Capture shift-invariance: location of patch in image 

should not matter
• Subsampling
• Allows greater invariance to deformations
• Allows the capture of large patterns with small filters



How to do machine learning

• Create training / validation sets
• Identify loss functions
• Choose hypothesis class
• Find best hypothesis by minimizing training loss
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Negative log likelihood for 
multiclass classification

• Often represent label as a ``one-hot’’ vector y
• y = [0, 0, …, 1,… 0]
• yk = 1 if label is k, 0 otherwise

L(h(x), y) = � log p̂(y|x)

L(h(x),y) = �
X

k

yk log p̂(y = k|x)



Building a convolutional network
conv + relu + subsample
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Building a convolutional network



Building a convolutional network
5x5 conv, no 
subsample

5x5 conv, 
subsample by 2

5x5 conv, 
subsample by 2
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Training the network

Overfitting



Controlling overfitting in 
convolutional networks
• Reduce parameters?
• Increase dataset size?
• Automatically by jittering examples - “Data 

augmentation”



Dropout

Without dropout
Train error: 0%
Test error: 1%

With dropout
Train error: 0.7%
Test error: 0.85%



Controlling overfitting in 
convolutional networks
• Dropout: Internally create data augmentations
• Randomly zero out some fraction of values before a

layer
• Can be thought of as per-layer data augmentation
• Typically applied on inputs to linear layers (since linear

layers have tons of parameters)



MNIST Classification
Method Error rate (%)
Linear classifier over pixels 12
Non-linear classifier over pixels 1.41
Linear classifier over HOG 1.44
Kernel SVM over HOG 0.79
Convolutional Network 0.95



ImageNet

• 1000 categories
• ~1000 instances per category

Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej 
Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei. (* = equal contribution) ImageNet 
Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 2015.



ImageNet

• Top-5 error: algorithm makes 5 predictions, true label 
must be in top 5
• Useful for incomplete labelings
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Exploring convnet
architectures



Deeper is better

0
5

10
15
20
25
30

2010 2011 2012 2013 2014

Challenge winner's accuracy

7 layers

16 
layers



Deeper is better
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The VGG pattern

• Every convolution is 3x3, padded by 1
• Every convolution followed by ReLU
• ConvNet is divided into “stages”
• Layers within a stage: no subsampling
• Subsampling by 2 at the end of each stage

• Layers within stage have same number of channels
• Every subsampling à double the number of 

channels



Example network
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Challenges in training: exploding / 
vanishing gradients 
• Vanishing / exploding gradients

• If each term is (much) greater than 1 à explosion of 
gradients
• If each term is (much) less than 1 à vanishing gradients
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Residual connections

• In general, gradients tend to vanish
• Key idea: allow gradients to flow unimpeded
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Residual connections

• In general, gradients tend to vanish
• Key idea: allow gradients to flow unimpeded
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Residual block

Conv+ReLU

Conv + 
ReLU



Residual connections

• Assumes all zi have the same size
• True within a stage
• Across stages?

• Doubling of feature channels
• Subsampling

• Increase channels by 1x1 convolution
• Decrease spatial resolution by subsampling 

zi+1 = gi+1(zi, wi+1) + subsample(Wzi)



The ResNet pattern

• Decrease resolution substantially in first layer
• Reduces memory consumption due to intermediate 

outputs
• Divide into stages
• maintain resolution, channels in each stage
• halve resolution, double channels between stages

• Divide each stage into residual blocks
• At the end, compute average value of each channel 

to feed linear classifier



Putting it all together - Residual 
networks
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Transfer learning with 
convolutional networks

Horse

Trained feature extractor

Linear classifier



Transfer learning with 
convolutional networks
• What do we do for a 

new image 
classification 
problem?
• Key idea: 
• Freeze parameters 

in feature extractor
• Retrain classifier

Trained feature extractor

Linear classifier



Transfer learning with 
convolutional networks

Dataset Non-Convnet
Method

Non-Convnet
perf

Pretrained
convnet + 
classifier

Improvement

Caltech 101 MKL 84.3 87.7 +3.4

VOC 2007 SIFT+FK 61.7 79.7 +18

CUB 200 SIFT+FK 18.8 61.0 +42.2

Aircraft SIFT+FK 61.0 45.0 -16

Cars SIFT+FK 59.2 36.5 -22.7



Why transfer learning?

• Availability of training data

• Computational cost

• Ability to pre-compute feature vectors and use for 
multiple tasks

• Con: NO end-to-end learning



Finetuning

Horse



Finetuning

Bakery

Initialize with pre-
trained, then train 

with low learning rate



Finetuning

Dataset Non-
Convnet
Method

Non-
Convnet
perf

Pretrained
convnet + 
classifier

Finetuned
convnet

Improvem
ent

Caltech 
101

MKL 84.3 87.7 88.4 +4.1

VOC 2007 SIFT+FK 61.7 79.7 82.4 +20.7

CUB 200 SIFT+FK 18.8 61.0 70.4 +51.6

Aircraft SIFT+FK 61.0 45.0 74.1 +13.1

Cars SIFT+FK 59.2 36.5 79.8 +20.6



Visualizing convolutional 
networks



Receptive field

• Which input pixels does a particular unit in a 
feature map depends on

convolve with 3 x 3 
filter



Receptive field

convolve 
with 3 x 3 
filter

convolve 
with 3 x 3 
filter3x3 receptive 

field
5x5 receptive 
field



Receptive field

convolve with 3 x 3 
filter, subsample



Receptive field

convolve 
with 3 x 3 
filter, 
subsample 
by factor 2

convolve 
with 3 x 3 
filter3x3 receptive 

field
7x7 receptive 
field: union of 9 
3x3 fields with 
stride of 2



Visualizing convolutional 
networks 

Rich feature hierarchies for accurate object detection and semantic segmentation. R. Girshick, J. Donahue, T. 
Darrell, J. Malik. In CVPR, 2014.

• Take images for which a given unit in a feature map scores high
• Identify the receptive field for each.



Visualizing convolutional 
networks II
• Block regions of the image and classify

Visualizing and Understanding Convolutional Networks. M. Zeiler and R. Fergus. In ECCV 2014.



Visualizing convolutional 
networks II
• Image pixels important for classification = pixels 

when blocked cause misclassification

Visualizing and Understanding Convolutional Networks. M. Zeiler and R. Fergus. In ECCV 2014.


