Image Classification




Convolutional networks - Why

e Convolutions
e Reduce parameters
e Capture shift-invariance: location of patch in image
should not matter
* Subsampling
* Allows greater invariance to deformations
* Allows the capture of large patterns with small filters



How to do machine learning

* Create training / validation sets
* |dentify loss functions
* Choose hypothesis class

* Find best hypothesis by minimizing training loss
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How to do machine learning

* Create training / validation sets |
Multiclass

* [dentify loss functions classification
I

* Choose hypothesis class

* Find best hypothesis by minimizing training loss
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L(I(z),y) = —logp(y|z)

Negative log likelihood for
multiclass classification




Negative log likelihood for
multiclass classification

L(h(z),y) = —log p(y|z)

e Often represent label as a one-hot” vectory
e y=[0,0,..,1,..0]
* vy, = 1if label is k, O otherwise

L(h(z),y) = =) yrlogp(y = kl|z)



Building a convolutional network

conv + relu + subsample
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Building a convolutional network




Building a convolutional network
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Training the network
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Controlling overfitting in
convolutional networks

* Reduce parameters?

* |ncrease dataset size?

* Automatically by jittering examples - “Data
augmentation”




Dropout

—— Test Error
Train Error
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Controlling overfitting in
convolutional networks

* Dropout: Internally create data augmentations

 Randomly zero out some fraction of values before a
layer

* Can be thought of as per-layer data augmentation

* Typically applied on inputs to linear layers (since linear
layers have tons of parameters)



MINIST Classification
Method ________|Errorrate(%)

Linear classifier over pixels 12
Non-linear classifier over pixels 1.41
Linear classifier over HOG 1.44
Kernel SVM over HOG 0.79
Convolutional Network 0.95
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ImageNet

* 1000 categories

* ~1000 instances per category

Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei. (* = equal contribution) ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 2015.



ImageNet

* Top-5 error: algorithm makes 5 predictions, true label
must be intop 5

* Useful for incomplete labelings
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Exploring convnet
architectures



Deeper is better

Challenge winner's accuracy
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The VGG pattern

* Every convolution is 3x3, padded by 1
* Every convolution followed by RelLU

* ConvNet is divided into “stages”
* Layers within a stage: no subsampling
e Subsampling by 2 at the end of each stage

* Layers within stage have same number of channels

* Every subsampling = double the number of
channels



Example network




Challenges in training: exploding /
vanishing gradients

* Vanishing / exploding gradients

0z . 0z 8Zn_1 (927;_|_1
5’zi - 8Zn_1 6Zn_2 o 87;@
* |f each term is (much) greater than 1 = explosion of
gradients

* |f each term is (much) less than 1 = vanishing gradients




Residual connections

* In general, gradients tend to vanish
* Key idea: allow gradients to flow unimpeded
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Residual connections

* In general, gradients tend to vanish
* Key idea: allow gradients to flow unimpeded
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Residual block

Conv+RelU




Residual connections

* Assumes all z. have the same size
* True within a stage

* Across stages?
* Doubling of feature channels
e Subsampling

* Increase channels by 1x1 convolution
* Decrease spatial resolution by subsampling

Zit1 = Git+1(24, wiy1) + subsample(W z;)



The ResNet pattern

e Decrease resolution substantially in first layer

* Reduces memory consumption due to intermediate
outputs

* Divide into stages
* maintain resolution, channels in each stage
* halve resolution, double channels between stages

* Divide each stage into residual blocks

* At the end, compute average value of each channel
to feed linear classifier



Putting it all together - Residual
networks
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Transfer learning with
convolutional networks

Linear classifier

Horse

Trained feature extractor



Transfer learning with
convolutional networks

* What do we do for a
new image
classification
problem?

Linear classifie

* Key idea:

* Freeze parameters
in feature extractor

* Retrain classifier

Trained feature extractor



Transfer learning with
convolutional networks

Dataset Non-Convnet | Non-Convnet | Pretrained Improvement
Method perf convnet +
classifier

Caltech 101 84.3 87.7 +3.4
VOC 2007 SIFT+FK 61.7 79.7 +18
CUB 200 SIFT+FK 18.8 61.0 +42.2
Aircraft SIFT+FK 61.0 45.0 -16

Cars SIFT+FK 59.2 36.5 -22.7



Why transfer learning?

* Availability of training data
 Computational cost

* Ability to pre-compute feature vectors and use for
multiple tasks

* Con: NO end-to-end learning



Finetuning

Horse




Finetuning

e
L

Initialize with pre-
trained, then train
with low learning rate



Finetuning

Non- Non- Pretrained |Finetuned |Improvem
Convnet Convnet convnet + |convnet ent
Method perf classifier
Caltech MKL 84.3 87.7 88.4 +4.1
101
VOC 2007  SIFT+FK 61.7 79.7 82.4 +20.7
CUB 200 SIFT+FK 18.8 61.0 70.4 +51.6
Aircraft SIFT+FK 61.0 45.0 74.1 +13.1

Cars SIFT+FK 59.2 36.5 79.8 +20.6



Visualizing convolutional
networks



Receptive field

* Which input pixels does a particular unitin a
feature map depends on

——

convolve with 3 x 3
filter




Receptive field
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Receptive field

——

convolve with 3 x 3
filter, subsample




Receptive field
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Visualizing convolutional
networks

* Take images for which a given unit in a feature map scores high
* Identify the receptive field for each.
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Rich feature hierarchies for accurate object detection and semantic segmentation. R. Girshick, J. Donahue, T.
Darrell, J. Malik. In CVPR, 2014.




Visualizing convolutional
networks |l

* Block regions of the image and classify

Visualizing and Understanding Convolutional Networks. M. Zeiler and R. Fergus. In ECCV 2014.



Visualizing convolutional
networks |l

* Image pixels important for classification = pixels

when blocked cause misclassification
(d) Classifier, probability
of correct class
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Visualizing and Understanding Convolutional Networks. M. Zeiler and R. Fergus. In ECCV 2014.



