Image Classification ### Convolutional networks - Why #### Convolutions - Reduce parameters - Capture shift-invariance: location of patch in image should not matter #### Subsampling - Allows greater invariance to deformations - Allows the capture of large patterns with small filters ### How to do machine learning - Create training / validation sets - Identify loss functions - Choose hypothesis class - Find best hypothesis by minimizing training loss ``` 001001 00101 0010 001 ``` ### How to do machine learning - Create training / validation sets - Identify loss functions - Choose hypothesis class - Find best hypothesis by minimizing training loss $$h(x) = \mathbf{s}$$ $$\hat{p}(y=k|x) \propto e^{s_k} \qquad \hat{p}(y=k|x) = \frac{e^{s_k}}{\sum_{i} e^{s_i}}$$ Multiclass classification $$L(h(x), y) = -\log \hat{p}(y|x)$$ Negative log likelihood for multiclass classification ## Negative log likelihood for multiclass classification $$L(h(x), y) = -\log \hat{p}(y|x)$$ - Often represent label as a ``one-hot'' vector y - y = [0, 0, ..., 1, ... 0] - $y_k = 1$ if label is k, 0 otherwise $$L(h(x), \mathbf{y}) = -\sum_{k} y_k \log \hat{p}(y = k|x)$$ ## Building a convolutional network ## Building a convolutional network ## Building a convolutional network subsample by 2 ## Training the network ## Controlling overfitting in convolutional networks - Reduce parameters? - Increase dataset size? Automatically by jittering examples - "Data augmentation" ### Dropout Without dropout Train error: 0% Test error: 1% With dropout Train error: 0.7% Test error: 0.85% ## Controlling overfitting in convolutional networks - Dropout: Internally create data augmentations - Randomly zero out some fraction of values before a layer - Can be thought of as per-layer data augmentation - Typically applied on inputs to linear layers (since linear layers have tons of parameters) #### MNIST Classification | Method | Error rate (%) | |-----------------------------------|----------------| | Linear classifier over pixels | 12 | | Non-linear classifier over pixels | 1.41 | | Linear classifier over HOG | 1.44 | | Kernel SVM over HOG | 0.79 | | Convolutional Network | 0.95 | | | | ### ImageNet - 1000 categories - ~1000 instances per category Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei. (* = equal contribution) **ImageNet Large Scale Visual Recognition Challenge**. *International Journal of Computer Vision*, 2015. ### ImageNet - Top-5 error: algorithm makes 5 predictions, true label must be in top 5 - Useful for incomplete labelings #### Challenge winner's accuracy # Exploring convnet architectures ## Deeper is better ### Deeper is better ### The VGG pattern - Every convolution is 3x3, padded by 1 - Every convolution followed by ReLU - ConvNet is divided into "stages" - Layers within a stage: no subsampling - Subsampling by 2 at the end of each stage - Layers within stage have same number of channels - Every subsampling double the number of channels ## Example network ## Challenges in training: exploding / vanishing gradients Vanishing / exploding gradients $$\frac{\partial z}{\partial z_i} = \frac{\partial z}{\partial z_{n-1}} \frac{\partial z_{n-1}}{\partial z_{n-2}} \dots \frac{\partial z_{i+1}}{\partial z_i}$$ - If each term is (much) greater than 1 → explosion of gradients - If each term is (much) less than 1 → vanishing gradients #### Residual connections - In general, gradients tend to vanish - Key idea: allow gradients to flow unimpeded $$z_{i+1} = f_{i+1}(z_i, w_{i+1}) \qquad \frac{\partial z_{i+1}}{\partial z_i} = \frac{\partial f_{i+1}(z_i, w_{i+1})}{\partial z_i}$$ $$\frac{\partial z}{\partial z_i} = \frac{\partial z}{\partial z_{n-1}} \frac{\partial z_{n-1}}{\partial z_{n-2}} \dots \frac{\partial z_{i+1}}{\partial z_i}$$ #### Residual connections - In general, gradients tend to vanish - Key idea: allow gradients to flow unimpeded $$z_{i+1} = g_{i+1}(z_i, w_{i+1}) + z_i$$ $\frac{\partial z_{i+1}}{\partial z_i} = \frac{\partial g_{i+1}(z_i, w_{i+1})}{\partial z_i} + I$ $$\frac{\partial z}{\partial z_i} = \frac{\partial z}{\partial z_{n-1}} \frac{\partial z_{n-1}}{\partial z_{n-2}} \dots \frac{\partial z_{i+1}}{\partial z_i}$$ ### Residual block #### Residual connections - Assumes all z_i have the same size - True within a stage - Across stages? - Doubling of feature channels - Subsampling - Increase channels by 1x1 convolution - Decrease spatial resolution by subsampling $$z_{i+1} = g_{i+1}(z_i, w_{i+1}) + \operatorname{subsample}(Wz_i)$$ ### The ResNet pattern - Decrease resolution substantially in first layer - Reduces memory consumption due to intermediate outputs - Divide into stages - maintain resolution, channels in each stage - halve resolution, double channels between stages - Divide each stage into residual blocks - At the end, compute average value of each channel to feed linear classifier ## Putting it all together - Residual networks ## Transfer learning with convolutional networks ## Transfer learning with convolutional networks - What do we do for a new image classification problem? - Key idea: - *Freeze* parameters in feature extractor - Retrain classifier ## Transfer learning with convolutional networks | Dataset | Non-Convnet
Method | Non-Convnet perf | Pretrained convnet + classifier | Improvement | |-------------|-----------------------|------------------|---------------------------------|-------------| | Caltech 101 | MKL | 84.3 | 87.7 | +3.4 | | VOC 2007 | SIFT+FK | 61.7 | 79.7 | +18 | | CUB 200 | SIFT+FK | 18.8 | 61.0 | +42.2 | | Aircraft | SIFT+FK | 61.0 | 45.0 | -16 | | Cars | SIFT+FK | 59.2 | 36.5 | -22.7 | ## Why transfer learning? Availability of training data Computational cost Ability to pre-compute feature vectors and use for multiple tasks Con: NO end-to-end learning ## Finetuning ## Finetuning ## Finetuning | Dataset | Non-
Convnet
Method | Non-
Convnet
perf | Pretrained convnet + classifier | Finetuned convnet | Improvem ent | |----------------|---------------------------|-------------------------|---------------------------------|-------------------|--------------| | Caltech
101 | MKL | 84.3 | 87.7 | 88.4 | +4.1 | | VOC 2007 | SIFT+FK | 61.7 | 79.7 | 82.4 | +20.7 | | CUB 200 | SIFT+FK | 18.8 | 61.0 | 70.4 | +51.6 | | Aircraft | SIFT+FK | 61.0 | 45.0 | 74.1 | +13.1 | | Cars | SIFT+FK | 59.2 | 36.5 | 79.8 | +20.6 | | | | | | | | # Visualizing convolutional networks Which input pixels does a particular unit in a feature map depends on 3x3 fields with stride of 2 ## Visualizing convolutional networks - Take images for which a given unit in a feature map scores high - Identify the receptive field for each. Rich feature hierarchies for accurate object detection and semantic segmentation. R. Girshick, J. Donahue, T. Darrell, J. Malik. In *CVPR*, 2014. ## Visualizing convolutional networks II Block regions of the image and classify Visualizing and Understanding Convolutional Networks. M. Zeiler and R. Fergus. In ECCV 2014. ## Visualizing convolutional networks II Image pixels important for classification = pixels when blocked cause misclassification Visualizing and Understanding Convolutional Networks. M. Zeiler and R. Fergus. In ECCV 2014.