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Why backpropagation
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functions
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Why backpropagation

• Neural networks are sequences of parametrized 
functions
• Parameters need to be set by minimizing some loss 

function
• Minimization through gradient descent requires 

computing the gradient
• Backpropagation: way to compute gradient  
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The gradient of convnets
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The gradient of convnets
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Backpropagation for a sequence 
of functions

• Assume we can compute partial derivatives of each function

• Use g(zi) to store gradient of z w.r.t zi, g(wi) for wi
• Calculate g(zi ) by iterating backwards

• Use g(zi) to compute gradient of parameters
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Loss as a function
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Putting it all together: SGD 
training of ConvNets
1. Sample image and label
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Putting it all together: SGD 
training of ConvNets
1. Sample image and label
2. Pass image through network to get loss (forward)
3. Backpropagate to get gradients (backward)
4. Take step along negative gradients to update 

weights
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Putting it all together: SGD 
training of ConvNets
1. Sample image and label
2. Pass image through network to get loss (forward)
3. Backpropagate to get gradients (backward)
4. Take step along negative gradients to update 

weights
5. Repeat!
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Beyond sequences: computation 
graphs
• Arbitrary graphs of functions
• No distinction between intermediate outputs and 

parameters
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Computation graph - Functions

• Each node implements two functions
• A “forward”

• Computes output given input
• A “backward”

• Computes derivative of z w.r.t input, given derivative of z w.r.t
output 
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Neural network frameworks



Stochastic gradient descent
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Momentum

• Average multiple gradient steps
• Use exponential averaging
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Weight decay

• Add −"# $ to the gradient
• Prevents # from growing to infinity
• Equivalent to L2 regularization of weights



Learning rate decay

• Large step size / learning 
rate
• Faster convergence 

initially
• Bouncing around at the 

end because of noisy 
gradients

• Learning rate must be 
decreased over time
• Usually done in steps



Convolutional network training

• Initialize network
• Sample minibatch of images
• Forward pass to compute loss
• Backpropagate loss to compute gradient
• Combine gradient with momentum and weight 

decay
• Take step according to current learning rate



Setting hyperparameters

• How do we find a hyperparameter setting that 
works?
• Try it!
• Train on train
• Test on test

• Picking hyperparameters that work for test = 
Overfitting on test set

validation



Setting hyperparameters

Train Validation Test

Training 
iterations

Test on 
validation

Pick new 
hyperparameters

Test on test
(Ideally only 
once)



Vagaries of optimization

• Non-convex
• Local optima
• Sensitivity to initialization

• Vanishing / exploding gradients

• If each term is (much) greater than 1 à explosion of 
gradients
• If each term is (much) less than 1 à vanishing gradients
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Image Classification



How to do machine learning

• Create training / validation sets
• Identify loss functions
• Choose hypothesis class
• Find best hypothesis by minimizing training loss



How to do machine learning

• Create training / validation sets
• Identify loss functions
• Choose hypothesis class
• Find best hypothesis by minimizing training loss
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Building a convolutional network
conv + relu + subsample
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linear

10 
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Building a convolutional network



MNIST Classification

Method Error rate (%)

Linear classifier over pixels 12

Kernel SVM over HOG 0.56

Convolutional Network 0.8



ImageNet

• 1000 categories
• ~1000 instances per category

Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej 
Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei. (* = equal contribution) ImageNet 
Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 2015.



ImageNet

• Top-5 error: algorithm makes 5 predictions, true label 
must be in top 5
• Useful for incomplete labelings



0
5

10
15
20
25
30

2010 2011 2012

Challenge winner's accuracy

Convolutional 
Networks


