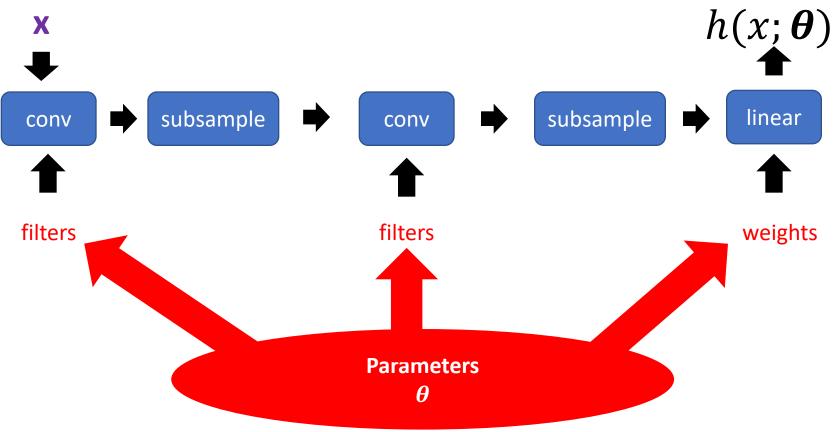
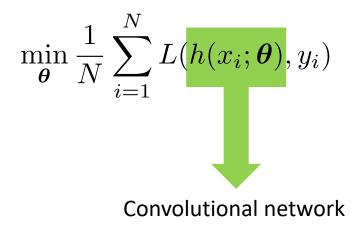
# Backpropagation

 Neural networks are sequences of parametrized functions



- Neural networks are sequences of parametrized functions
- Parameters need to be set by minimizing some loss function

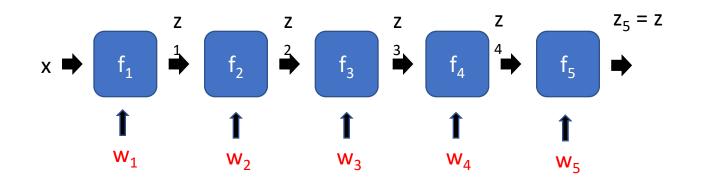


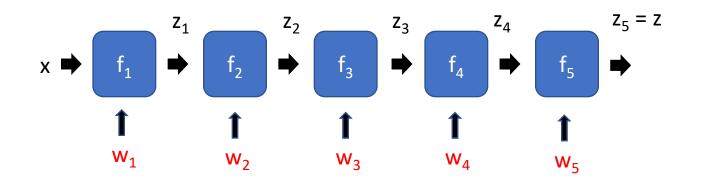
- Neural networks are sequences of parametrized functions
- Parameters need to be set by minimizing some loss function
- Minimization through gradient descent requires computing the gradient

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \lambda \frac{1}{N} \sum_{i=1}^{N} \nabla L(h(x_i; \boldsymbol{\theta}), y_i)$$

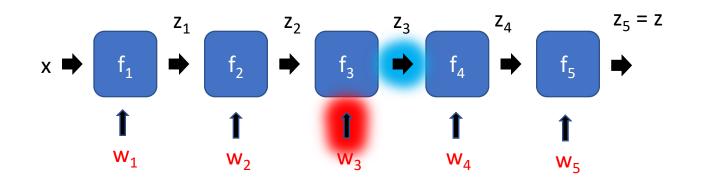
- Neural networks are sequences of parametrized functions
- Parameters need to be set by minimizing some loss function
- Minimization through gradient descent requires computing the gradient  $\theta^{(t+1)} = \theta^{(t)} - \lambda \frac{1}{N} \sum_{i=1}^{N} \nabla L(h(x_i; \theta), y_i)$  $z = h(x; \theta) \qquad \nabla_{\theta} L(z, y) = \frac{\partial L(z, y)}{\partial z} \frac{\partial z}{\partial \theta}$

- Neural networks are sequences of parametrized functions
- Parameters need to be set by minimizing some loss function
- Minimization through gradient descent requires computing the gradient  $\partial z$
- **Backpropagation**: way to compute gradient  $\frac{1}{\partial}$

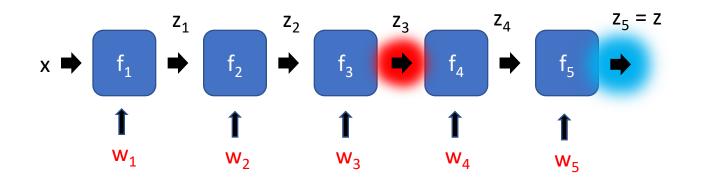




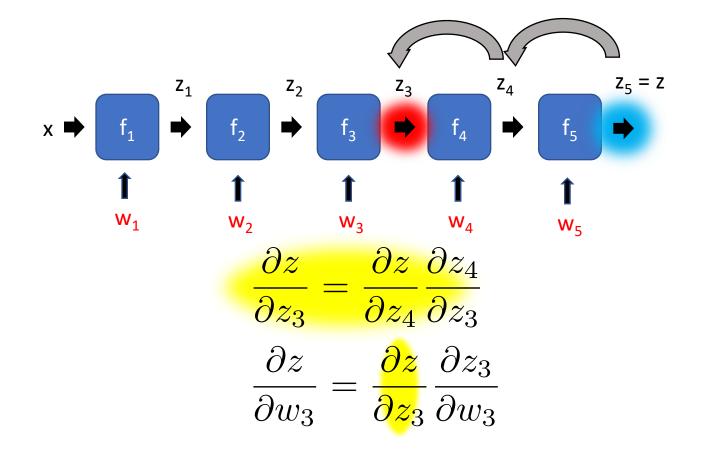
 $rac{\partial z}{\partial w_3}$ 

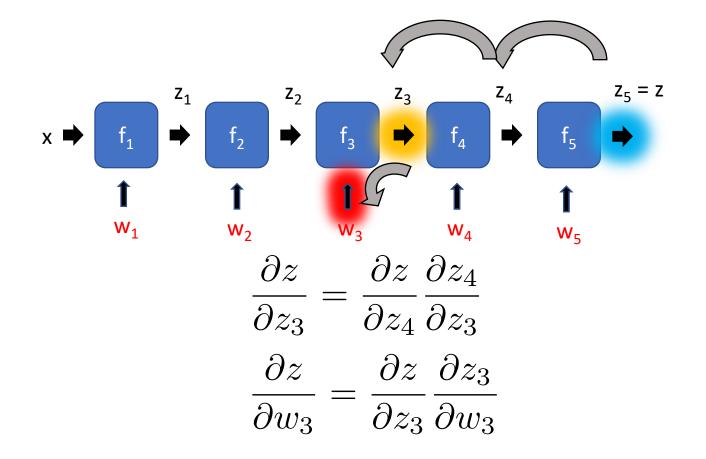


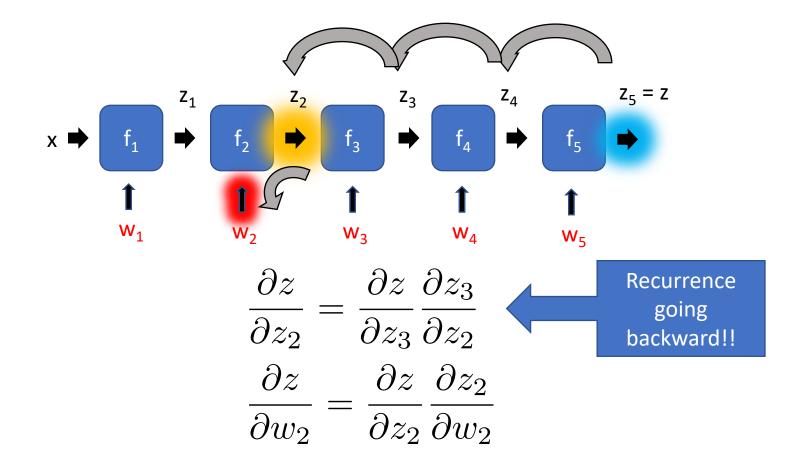
| $\partial z$              | <br>$\partial z$              | $\partial z_3$            |
|---------------------------|-------------------------------|---------------------------|
| $\overline{\partial w_3}$ | <br>$\overline{\partial z_3}$ | $\overline{\partial w_3}$ |

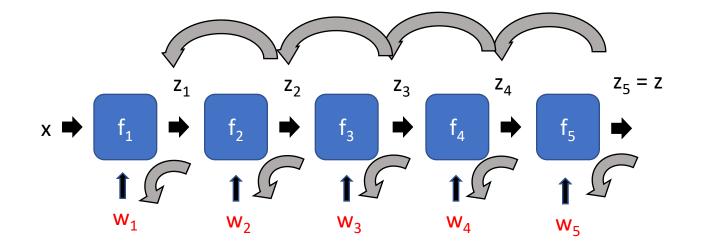


$$\frac{\partial z}{\partial w_3} = \frac{\frac{\partial z}{\partial z_3}}{\frac{\partial z_3}{\partial w_3}} \frac{\partial z_3}{\partial w_3}$$









Backpropagation

# Backpropagation for a sequence of functions

 $z_i = f_i(z_{i-1}, w_i)$   $z_0 = x$   $z = z_n$ 

• Assume we can compute partial derivatives of each function

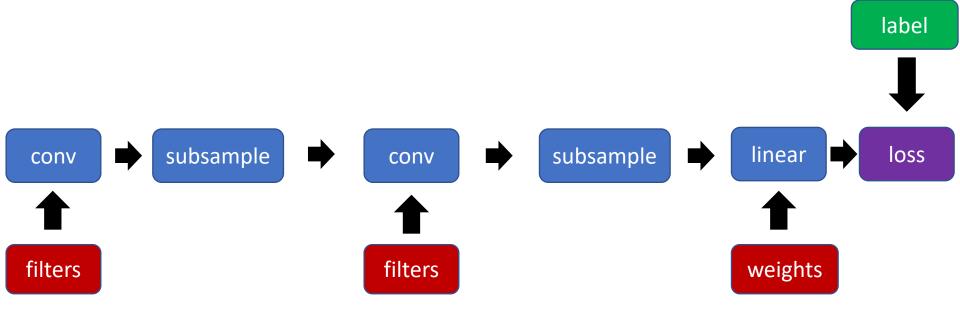
$$\frac{\partial z_i}{\partial z_{i-1}} = \frac{\partial f_i(z_{i-1}, w_i)}{\partial z_{i-1}} \qquad \frac{\partial z_i}{\partial w_i} = \frac{\partial f_i(z_{i-1}, w_i)}{\partial w_i}$$

- Use  $g(z_i)$  to store gradient of z w.r.t  $z_i$ ,  $g(w_i)$  for  $w_i$
- Calculate g(z<sub>i</sub>) by iterating backwards

$$g(z_n) = \frac{\partial z}{\partial z_n} = 1$$
  $g(z_{i-1}) = \frac{\partial z}{\partial z_i} \frac{\partial z_i}{\partial z_{i-1}} = g(z_i) \frac{\partial z_i}{\partial z_{i-1}}$ 

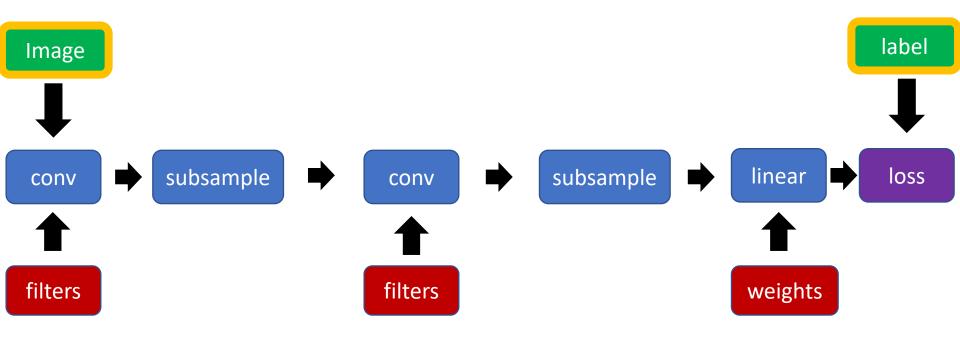
• Use g(z<sub>i</sub>) to compute gradient of parameters

$$g(w_i) = \frac{\partial z}{\partial z_i} \frac{\partial z_i}{\partial w_i} = g(z_i) \frac{\partial z_i}{\partial w_i}$$

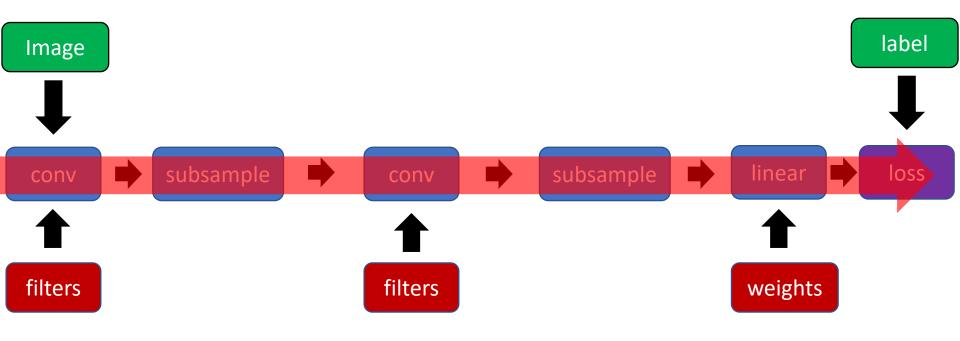


#### Loss as a function

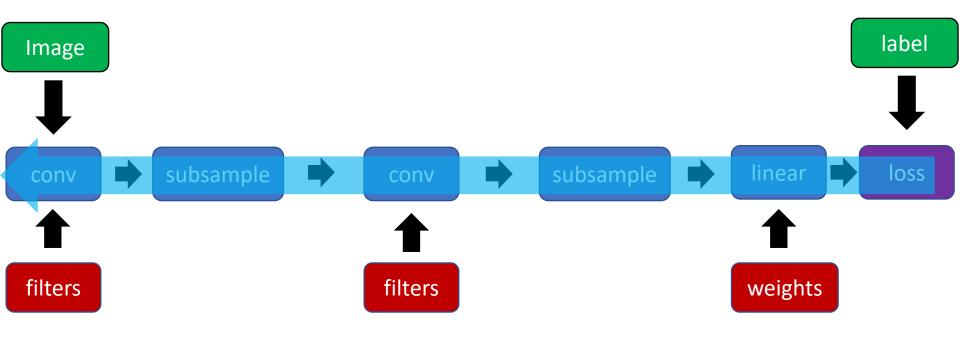
1. Sample image and label



- 1. Sample image and label
- 2. Pass image through network to get loss (forward)



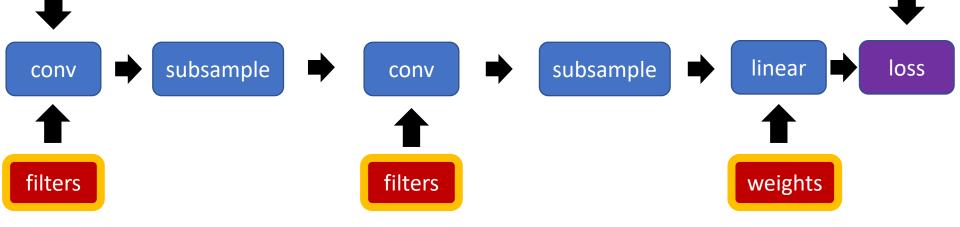
- 1. Sample image and label
- 2. Pass image through network to get loss (forward)
- 3. Backpropagate to get gradients (backward)



- 1. Sample image and label
- 2. Pass image through network to get loss (forward)

label

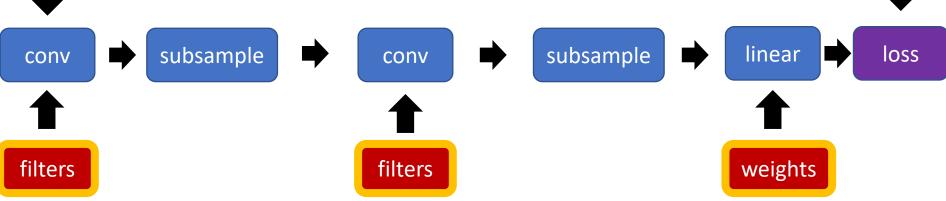
- 3. Backpropagate to get gradients (backward)
- 4. Take step along negative gradients to update weights



- 1. Sample image and label
- 2. Pass image through network to get loss (forward)

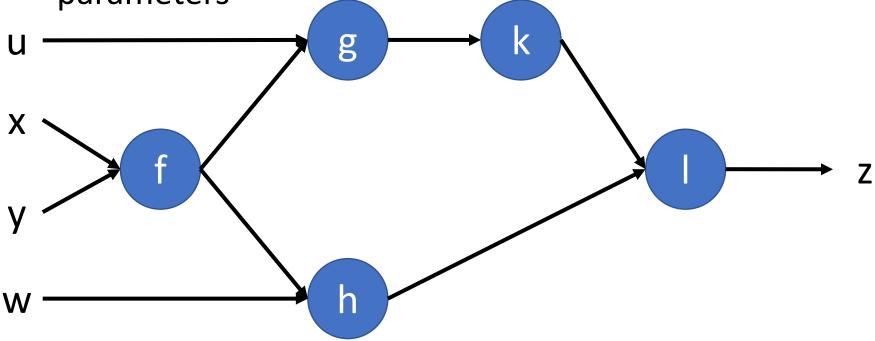
label

- 3. Backpropagate to get gradients (backward)
- 4. Take step along negative gradients to update weights
  - 5. Repeat!



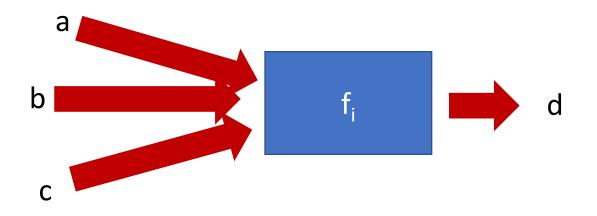
# Beyond sequences: computation graphs

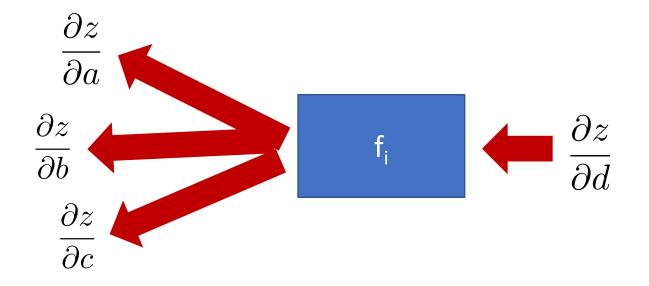
- Arbitrary graphs of functions
- No distinction between intermediate outputs and parameters

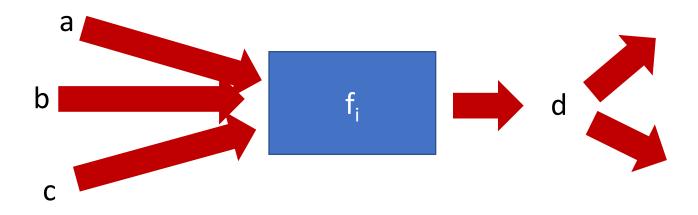


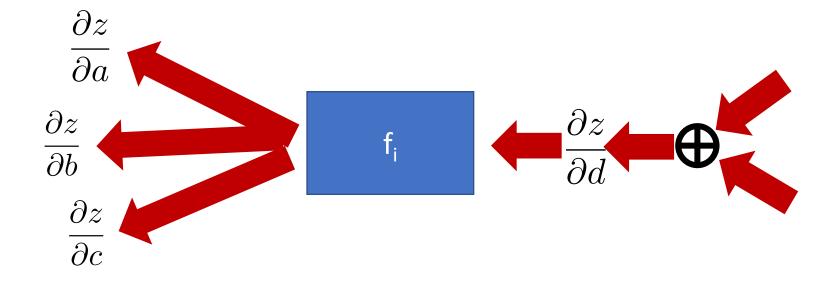
## Computation graph - Functions

- Each node implements two functions
  - A "forward"
    - Computes output given input
  - A "backward"
    - Computes derivative of z w.r.t input, given derivative of z w.r.t output









#### Neural network frameworks









#### Stochastic gradient descent

$$\boldsymbol{\theta}^{(t+1)} \leftarrow \boldsymbol{\theta}^{(t)} - \lambda \underbrace{\frac{1}{K} \sum_{k=1}^{K} \nabla L(h(x_{i_k}; \boldsymbol{\theta}^{(t)}), y_{i_k})}_{\text{Noisy!}}$$

#### Momentum

- Average multiple gradient steps
- Use exponential averaging

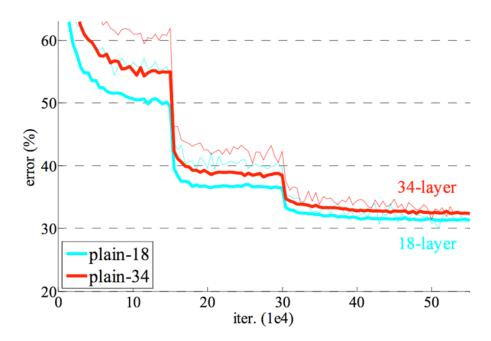
$$\mathbf{g}^{(t)} \leftarrow \frac{1}{K} \sum_{k=1}^{K} \nabla L(h(x_{i_k}; \boldsymbol{\theta}^{(t)}), y_{i_k})$$
$$\mathbf{p}^{(t)} \leftarrow \mu \mathbf{g}^{(t)} + (1 - \mu) \mathbf{p}^{(t-1)}$$
$$\boldsymbol{\theta}^{(t+1)} \leftarrow \boldsymbol{\theta}^{(t)} - \lambda \mathbf{p}^{(t)}$$

# Weight decay

- Add  $-\alpha \theta^{(t)}$  to the gradient
- Prevents  $\boldsymbol{\theta}$  from growing to infinity
- Equivalent to L2 regularization of weights

## Learning rate decay

- Large step size / learning rate
  - Faster convergence initially
  - Bouncing around at the end because of noisy gradients
- Learning rate must be decreased over time
- Usually done in steps



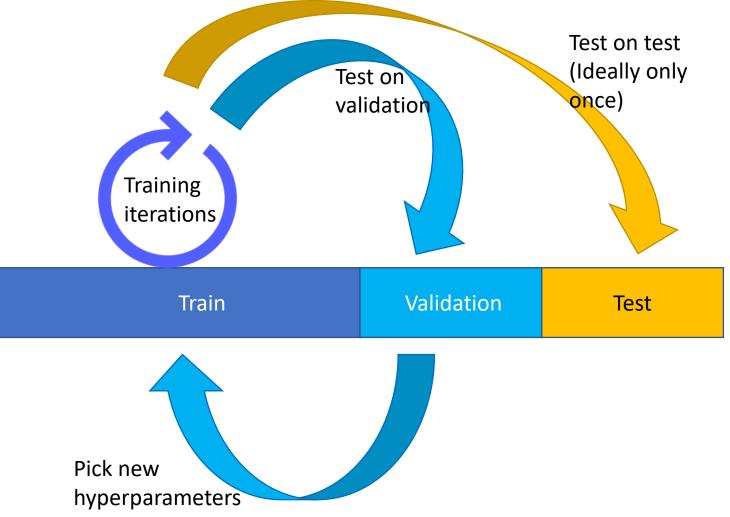
## Convolutional network training

- Initialize network
- Sample *minibatch* of images
- Forward pass to compute loss
- Backpropagate loss to compute gradient
- Combine gradient with momentum and weight decay
- Take step according to current learning rate

## Setting hyperparameters

- How do we find a hyperparameter setting that works?
- Try it!
  - Train on train
  - Test on test validation
- Picking hyperparameters that work for test = Overfitting on test set

## Setting hyperparameters



## Vagaries of optimization

- Non-convex
  - Local optima
  - Sensitivity to initialization
- Vanishing / exploding gradients  $\frac{\partial z}{\partial z_{i}} = \frac{\partial z}{\partial z_{n-1}} \frac{\partial z_{n-1}}{\partial z_{n-2}} \dots \frac{\partial z_{i+1}}{\partial z_{i}}$ 
  - If each term is (much) greater than 1 → explosion of gradients
  - If each term is (much) less than  $1 \rightarrow vanishing gradients$

# Image Classification

### How to do machine learning

- Create training / validation sets
- Identify loss functions
- Choose hypothesis class
- Find best hypothesis by minimizing training loss



#### How to do machine learning

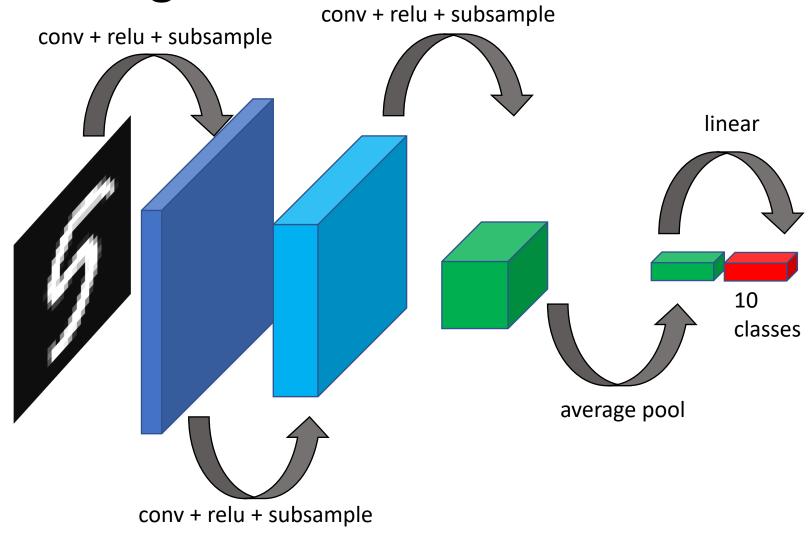
- Create training / validation sets
- Identify loss functions
- Choose hypothesis class
- Find best hypothesis by minimizing training loss

 $h(x) = \mathbf{s} \qquad \hat{p}(y = k | x) \propto e^{s_k} \quad \hat{p}(y = k | x) = \frac{e^{s_k}}{\sum_j e^{s_j}}$ 

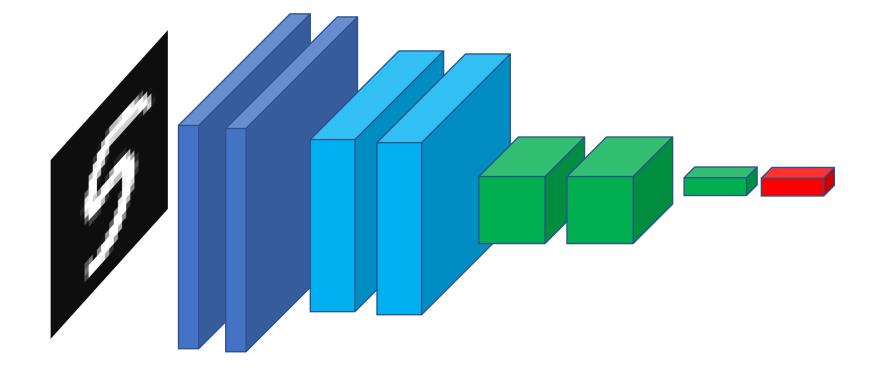
$$L(h(x), y) = -\log \hat{p}(y|x)$$



# Building a convolutional network



### Building a convolutional network



## **MNIST Classification**

| Method                        | Error rate (%) |
|-------------------------------|----------------|
| Linear classifier over pixels | 12             |

#### ImageNet

- 1000 categories
- ~1000 instances per category



Olga Russakovsky<sup>\*</sup>, Jia Deng<sup>\*</sup>, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei. (\* = equal contribution) **ImageNet Large Scale Visual Recognition Challenge**. *International Journal of Computer Vision*, 2015.

#### ImageNet

- Top-5 error: algorithm makes 5 predictions, true label must be in top 5
- Useful for incomplete labelings

Challenge winner's accuracy

