
Backpropagation

Why backpropagation

• Neural networks are sequences of parametrized
functions

conv

filters

subsample subsampleconv linear

filters weights

Parameters
!

x ℎ($; !)

Why backpropagation

• Neural networks are sequences of parametrized
functions
• Parameters need to be set by minimizing some loss

function

Convolutional network

min
✓

1

N

NX

i=1

L(h(xi;✓), yi)

Why backpropagation

• Neural networks are sequences of parametrized
functions
• Parameters need to be set by minimizing some loss

function
• Minimization through gradient descent requires

computing the gradient

✓(t+1) = ✓(t) � �
1

N

NX

i=1

rL(h(xi;✓), yi)

Why backpropagation

• Neural networks are sequences of parametrized
functions
• Parameters need to be set by minimizing some loss

function
• Minimization through gradient descent requires

computing the gradient
✓(t+1) = ✓(t) � �

1

N

NX

i=1

rL(h(xi;✓), yi)

z = h(x;✓) r✓L(z, y) =
@L(z, y)

@z

@z

@✓

Why backpropagation

• Neural networks are sequences of parametrized
functions
• Parameters need to be set by minimizing some loss

function
• Minimization through gradient descent requires

computing the gradient
• Backpropagation: way to compute gradient

@z

@✓

The gradient of convnets

f1 f2 f3 f4 f5x

w1 w2 w3 w4 w5

z
1

z
2

z
3

z
4

z5 = z

The gradient of convnets

f1 f2 f3 f4 f5x

w1 w2 w3 w4 w5

z1 z2 z3 z4 z5 = z

@z

@w3
=

@z

@z3

@z3
@w3

The gradient of convnets

f1 f2 f3 f4 f5x

w1 w2 w3 w4 w5

z1 z2 z3 z4 z5 = z

@z

@w3
=

@z

@z3

@z3
@w3

The gradient of convnets

f1 f2 f3 f4 f5x

w1 w2 w3 w4 w5

z1 z2 z3 z4 z5 = z

@z

@w3
=

@z

@z3

@z3
@w3

The gradient of convnets

f1 f2 f3 f4 f5x

w1 w2 w3 w4 w5

z1 z2 z3 z4 z5 = z

@z

@w3
=

@z

@z3

@z3
@w3

@z

@z3
=

@z

@z4

@z4
@z3

The gradient of convnets

f1 f2 f3 f4 f5x

w1 w2 w3 w4 w5

z1 z2 z3 z4 z5 = z

@z

@w3
=

@z

@z3

@z3
@w3

@z

@z3
=

@z

@z4

@z4
@z3

The gradient of convnets

f1 f2 f3 f4 f5x

w1 w2 w3 w4 w5

z1 z2 z3 z4 z5 = z

@z

@z2
=

@z

@z3

@z3
@z2

@z

@w2
=

@z

@z2

@z2
@w2

Recurrence
going

backward!!

The gradient of convnets

f1 f2 f3 f4 f5x

w1 w2 w3 w4 w5

z1 z2 z3 z4 z5 = z

Backpropagation for a sequence
of functions

• Assume we can compute partial derivatives of each function

• Use g(zi) to store gradient of z w.r.t zi, g(wi) for wi
• Calculate g(zi) by iterating backwards

• Use g(zi) to compute gradient of parameters

zi = fi(zi�1, wi) z0 = x z = zn

@zi
@zi�1

=
@fi(zi�1, wi)

@zi�1

@zi
@wi

=
@fi(zi�1, wi)

@wi

g(zn) =
@z

@zn
= 1 g(zi�1) =

@z

@zi

@zi
@zi�1

= g(zi)
@zi

@zi�1

g(wi) =
@z

@zi

@zi
@wi

= g(zi)
@zi
@wi

Loss as a function

conv

filters

subsample subsampleconv linear

filters weights

loss

label

Putting it all together: SGD
training of ConvNets
1. Sample image and label

conv

filters

subsample subsampleconv linear

filters weights

loss

labelImage

Putting it all together: SGD
training of ConvNets
1. Sample image and label
2. Pass image through network to get loss (forward)

conv

filters

subsample subsampleconv linear

filters weights

loss

labelImage

Putting it all together: SGD
training of ConvNets
1. Sample image and label
2. Pass image through network to get loss (forward)
3. Backpropagate to get gradients (backward)

conv

filters

subsample subsampleconv linear

filters weights

loss

labelImage

Putting it all together: SGD
training of ConvNets
1. Sample image and label
2. Pass image through network to get loss (forward)
3. Backpropagate to get gradients (backward)
4. Take step along negative gradients to update

weights

conv

filters

subsample subsampleconv linear

filters weights

loss

labelImage

Putting it all together: SGD
training of ConvNets
1. Sample image and label
2. Pass image through network to get loss (forward)
3. Backpropagate to get gradients (backward)
4. Take step along negative gradients to update

weights
5. Repeat!

conv

filters

subsample subsampleconv linear

filters weights

loss

labelImage

Beyond sequences: computation
graphs
• Arbitrary graphs of functions
• No distinction between intermediate outputs and

parameters

f

h

g k

l
x

y

w

u

z

Computation graph - Functions

• Each node implements two functions
• A “forward”

• Computes output given input
• A “backward”

• Computes derivative of z w.r.t input, given derivative of z w.r.t
output

Computation graphs

fi

a

d

c

b

Computation graphs

fi
@z

@d

@z

@a

@z

@b

@z

@c

Computation graphs

fi

a

d

c

b

Computation graphs

fi
@z

@d

@z

@a

@z

@b

@z

@c

Neural network frameworks

Stochastic gradient descent

✓(t+1) ✓(t) � �
1

K

KX

k=1

rL(h(xik ;✓
(t)), yik)

Noisy!

Momentum

• Average multiple gradient steps
• Use exponential averaging

g(t) 1

K

KX

k=1

rL(h(xik ;✓
(t)), yik)

p(t) µg(t) + (1� µ)p(t�1)

✓(t+1) ✓(t) � �p(t)

Weight decay

• Add −"# $ to the gradient
• Prevents # from growing to infinity
• Equivalent to L2 regularization of weights

Learning rate decay

• Large step size / learning
rate
• Faster convergence

initially
• Bouncing around at the

end because of noisy
gradients

• Learning rate must be
decreased over time
• Usually done in steps

Convolutional network training

• Initialize network
• Sample minibatch of images
• Forward pass to compute loss
• Backpropagate loss to compute gradient
• Combine gradient with momentum and weight

decay
• Take step according to current learning rate

Setting hyperparameters

• How do we find a hyperparameter setting that
works?
• Try it!
• Train on train
• Test on test

• Picking hyperparameters that work for test =
Overfitting on test set

validation

Setting hyperparameters

Train Validation Test

Training
iterations

Test on
validation

Pick new
hyperparameters

Test on test
(Ideally only
once)

Vagaries of optimization

• Non-convex
• Local optima
• Sensitivity to initialization

• Vanishing / exploding gradients

• If each term is (much) greater than 1 à explosion of
gradients
• If each term is (much) less than 1 à vanishing gradients

@z

@zi
=

@z

@zn�1

@zn�1

@zn�2
. . .

@zi+1

@zi

Image Classification

How to do machine learning

• Create training / validation sets
• Identify loss functions
• Choose hypothesis class
• Find best hypothesis by minimizing training loss

How to do machine learning

• Create training / validation sets
• Identify loss functions
• Choose hypothesis class
• Find best hypothesis by minimizing training loss

h(x) = s

Multiclass
classificatio

n!!

p̂(y = k|x) / esk p̂(y = k|x) = eskP
j e

sj

L(h(x), y) = � log p̂(y|x)

Building a convolutional network
conv + relu + subsample

conv + relu + subsample

conv + relu + subsample

average pool

linear

10
classes

Building a convolutional network

MNIST Classification

Method Error rate (%)

Linear classifier over pixels 12

Kernel SVM over HOG 0.56

Convolutional Network 0.8

ImageNet

• 1000 categories
• ~1000 instances per category

Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei. (* = equal contribution) ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 2015.

ImageNet

• Top-5 error: algorithm makes 5 predictions, true label
must be in top 5
• Useful for incomplete labelings

0
5

10
15
20
25
30

2010 2011 2012

Challenge winner's accuracy

Convolutional
Networks

