Non-linear classifiers
Neural networks



Linear classifiers on pixels are bad

e Solution 1: Better feature vectors

e Solution 2: Non-linear classifiers
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Non-linear classifiers

e Suppose we have a
feature vector for every
Image

* Linear classifier

* Nearest neighbor: ®
assign each point the
label of the nearest ®
neighbor

e Decision tree: series of
if-then-else statements o0
on different features

* Neural networks /
multi-layer perceptrons
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Multilayer perceptrons

* Key idea: build complex functions by composing
simple functions

e Caveat: simple functions must include non-
linearities

 W(U(Vx)) = (WUV)x
* Let us start with only two ingredients:

* Linear:y=Wx+b

* Rectified linear unit (ReLU, also called half-wave
rectification): y = max(x,0)



The linear function

cy=Wx+Db
 Parameters: Wb
* Input: x (column vector, or 1 data point per column)

* Qutput: y (column vector or 1 data point per
column)

* Hyperparameters:
* Input dimension = # of rows in x
* Output dimension = # of rows iny
* W : outdim x indim
* b:outdimx1



The linear function

cy=Wx+Db

* Every row of y corresponds to a hyperplane in x
space
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Multilayer perceptron on images

* An example network for cat vs dog
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The linear function

cy=Wx+Db

* How many parameters does a linear function have?
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The case whend,, =2. A
single row in y plotted
for every possible value
of x



The linear function for images
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Reducing parameter count
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Reducing parameter count




ldea 1: local connectivity

* Pixels only related to nearby pixels




ldea 2: Translation invariance

* Pixels only related to nearby pixels

* Weights should not depend on the location of the
neighborhood




Linear function + translation
invariance = convolution

 Local connectivity determines kernel size
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Linear function + translation
invariance = convolution
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1.8 2.3 4.5
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Feature map
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Convolution with multiple filters
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Convolution over multlple
channels %




Convolution as a primitive
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Convolution as a feature detector

* score at (x,y) = dot product (filter, image patch at
(X))

* Response represents similarity between filter and
image patch




Kernel sizes and padding




Kernel sizes and padding

e Valid convolution decreases size by (k-1)/2 on each
side

* Pad by (k-1)/2! g
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The convolution unit

* Each convolutional unit takes a collection of feature
maps as input, and produces a collection of feature
maps as output

* Parameters: Filters (+bias)

* If ¢, input feature maps and c_ , output feature
maps
* Eachfilteriskx kx ¢,
* There are c_, such filters

e Other hyperparameters: padding



Invariance to distortions




Invariance to distortions
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Invariance to distortions
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Invariance to distortions: Pooling




Invariance to distortions:
Subsampling




Convolution subsampling
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Convolution subsampling
convolution

e Convolution in earlier steps detects more local
patterns less resilient to distortion

e Convolution in later steps detects more global
patterns more resilient to distortion

* Subsampling allows capture of larger, more
invariant patterns



Strided convolution

e Convolution with stride s = standard convolution +
subsampling by picking 1 value every s values

* Example: convolution with stride 2 = standard
convolution + subsampling by a factor of 2



Convolutional networks

Horse




Convolutional networks

P { == Horse

Visualizations from : M. Zeiler and R. Fergus. Visualizing and Understanding Convolutional Networks. In ECCV 2014.



Convolutional networks

J === Horse

Visualizations from : M. Zeiler and R. Fergus. Visualizing and Understanding Convolutional Networks. In ECCV 2014.



Convolutional Networks and the
Brain
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Slide credit: Jitendra Malik



Receptive fields of simple cells
(discovered by Hubel & Wiesel)

Slide credit: Jitendra Malik



Convolutional networks

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.

Gradient-based learning applied to document
recognition. Proceedings of the IEEE 86.11 (1998): 2278-2324.



Convolutional networks

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5

6@28x28
32x32 X S2: f. maps
6@14x14

| Full coanection | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.



Convolutional networks
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