
Non-linear classifiers
Neural networks



Linear classifiers on pixels are bad

• Solution 1: Better feature vectors
• Solution 2: Non-linear classifiers



A pipeline for recognition

Compute 
image 

gradients

Compute 
SIFT 

descriptors

Assign to 
k-means 
centers

Compute 
histogram

Linear 
classifier

Horse



Linear classifiers on pixels are bad

• Solution 1: Better feature vectors
• Solution 2: Non-linear classifiers



Non-linear classifiers

• Suppose we have a 
feature vector for every 
image



Non-linear classifiers

• Suppose we have a 
feature vector for every 
image
• Linear classifier



Non-linear classifiers

• Suppose we have a 
feature vector for every 
image
• Linear classifier
• Nearest neighbor: 

assign each point the 
label of the nearest 
neighbor



Non-linear classifiers

• Suppose we have a 
feature vector for every 
image
• Linear classifier
• Nearest neighbor: 

assign each point the 
label of the nearest 
neighbor
• Decision tree: series of 

if-then-else statements 
on different features



Non-linear classifiers

• Suppose we have a 
feature vector for every 
image
• Linear classifier
• Nearest neighbor: 

assign each point the 
label of the nearest 
neighbor
• Decision tree: series of 

if-then-else statements 
on different features
• Neural networks / 

multi-layer perceptrons



A pipeline for recognition

Compute 
image 

gradients

Compute 
SIFT 

descriptors

Assign to 
k-means 
centers

Compute 
histogram

Linear 
classifier

Horse



Multilayer perceptrons

• Key idea: build complex functions by composing 
simple functions
• Caveat: simple functions must include non-

linearities
• W(U(Vx)) = (WUV)x
• Let us start with only two ingredients:
• Linear: y = Wx + b
• Rectified linear unit (ReLU, also called half-wave 

rectification): y = max(x,0)



The linear function

• y = Wx + b
• Parameters: W,b
• Input: x (column vector, or 1 data point per column)
• Output: y (column vector or 1 data point per 

column)
• Hyperparameters:
• Input dimension = # of rows in x
• Output dimension = # of rows in y
• W : outdim x indim
• b : outdim x 1



The linear function

• y = Wx + b
• Every row of y corresponds to a hyperplane in x

space

=
The case when din = 2. A 
single row in y plotted 
for every possible value 
of x

din
dout



Multilayer perceptrons

• Key idea: build complex functions by composing simple functions

f(x) = Wx f(x) = Wx f(x) = Wxg(x) = 
max(x,0)

g(x) = 
max(x,0)

x

z

1 row of z 
plotted for 

every value of x

1 row of y 
plotted for 

every value of x

y



Multilayer perceptron on images

• An example network for cat vs dog

256

256
65K

Reshape Linear 
+ ReLU

Linear 
+ ReLU

Linear + 
sigmoid

p(dog | 
image)

1024

32



The linear function

• y = Wx + b
• How many parameters does a linear function have?

=
The case when din = 2. A 
single row in y plotted 
for every possible value 
of x

din
dout



The linear function for images

65KW

65K

1024



Reducing parameter count

W



Reducing parameter count



Idea 1: local connectivity

• Pixels only related to nearby pixels



Idea 2: Translation invariance

• Pixels only related to nearby pixels
• Weights should not depend on the location of the 

neighborhood



Linear function + translation 
invariance = convolution
• Local connectivity determines kernel size

5.4 0.1 3.6

1.8 2.3 4.5

1.1 3.4 7.2



Linear function + translation 
invariance = convolution

5.4 0.1 3.6

1.8 2.3 4.5

1.1 3.4 7.2

• Local connectivity determines kernel size
Feature map



Convolution with multiple filters

5.4 0.1 3.6

1.8 2.3 4.5

1.1 3.4 7.2

Feature map



Convolution over multiple 
channels

*

*

*

*
+

+
=



Convolution as a primitive

w

h

c

w

h

c’

Convolution

c

c’



Convolution as a feature detector

• score at (x,y) = dot product (filter, image patch at 
(x,y))
• Response represents similarity between filter and 

image patch



Kernel sizes and padding

k
k



Kernel sizes and padding

• Valid convolution decreases size by (k-1)/2 on each 
side
• Pad by (k-1)/2!

k
k

Valid 
convolution(k-1)/2



The convolution unit

• Each convolutional unit takes a collection of feature 
maps as input, and produces a collection of feature 
maps as output
• Parameters: Filters (+bias)
• If cin input feature maps and cout output feature 

maps
• Each filter is k x k x cin
• There are cout such filters

• Other hyperparameters: padding



Invariance to distortions



Invariance to distortions



Invariance to distortions



Invariance to distortions: Pooling

…



Invariance to distortions: 
Subsampling



Convolution subsampling 
convolution



Convolution subsampling 
convolution
• Convolution in earlier steps detects more local 

patterns less resilient to distortion
• Convolution in later steps detects more global 

patterns more resilient to distortion
• Subsampling allows capture of larger, more 

invariant patterns



Strided convolution

• Convolution with stride s = standard convolution +
subsampling by picking 1 value every s values
• Example: convolution with stride 2 = standard

convolution + subsampling by a factor of 2



Convolutional networks

Horse



Convolutional networks

Horse

Visualizations from : M. Zeiler and R. Fergus. Visualizing and Understanding Convolutional Networks. In ECCV 2014.



Convolutional networks

Horse

Visualizations from : M. Zeiler and R. Fergus. Visualizing and Understanding Convolutional Networks. In ECCV 2014.



Convolutional Networks and the 
Brain 

Slide credit: Jitendra Malik



Receptive fields of simple cells
(discovered by Hubel & Wiesel)

Slide credit: Jitendra Malik



Convolutional networks

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 
Gradient-based learning applied to document 
recognition. Proceedings of the IEEE 86.11 (1998): 2278-2324.



Convolutional networks



Convolutional networks

conv

filters

subsample subsampleconv linear

filters weights


