Non-linear classifiers Neural networks

Linear classifiers on pixels are bad

- Solution 1: Better feature vectors
- Solution 2: Non-linear classifiers

A pipeline for recognition

Linear classifiers on pixels are bad

- Solution 1: Better feature vectors
- Solution 2: Non-linear classifiers

 Suppose we have a feature vector for every image

- Suppose we have a feature vector for every image
 - Linear classifier

- Suppose we have a feature vector for every image
 - Linear classifier
 - Nearest neighbor: assign each point the label of the nearest neighbor

- Suppose we have a feature vector for every image
 - Linear classifier
 - Nearest neighbor: assign each point the label of the nearest neighbor
 - Decision tree: series of if-then-else statements on different features

- Suppose we have a feature vector for every image
 - Linear classifier
 - Nearest neighbor: assign each point the label of the nearest neighbor
 - Decision tree: series of if-then-else statements on different features
 - Neural networks / multi-layer perceptrons

A pipeline for recognition

Multilayer perceptrons

- Key idea: build complex functions by composing simple functions
- Caveat: simple functions must include nonlinearities
- W(U(Vx)) = (WUV)x
- Let us start with only two ingredients:
 - Linear: y = Wx + b
 - Rectified linear unit (ReLU, also called half-wave rectification): y = max(x,0)

The linear function

- y = Wx + b
- Parameters: W,b
- Input: x (column vector, or 1 data point per column)
- Output: y (column vector or 1 data point per column)
- Hyperparameters:
 - Input dimension = # of rows in x
 - Output dimension = # of rows in y
 - W: outdim x indim
 - b : outdim x 1

The linear function

- y = Wx + b
- Every row of y corresponds to a hyperplane in x space

Multilayer perceptrons

Key idea: build complex functions by composing simple functions

Multilayer perceptron on images

An example network for cat vs dog

The linear function

- y = Wx + b
- How many parameters does a linear function have?

The linear function for images

Reducing parameter count

Reducing parameter count

Idea 1: local connectivity

Pixels only related to nearby pixels

Idea 2: Translation invariance

- Pixels only related to nearby pixels
- Weights should not depend on the location of the neighborhood

Linear function + translation invariance = *convolution*

Local connectivity determines kernel size

5.4	0.1	3.6
1.8	2.3	4.5
1.1	3.4	7.2

Linear function + translation invariance = *convolution*

Local connectivity determines kernel size

5.4	0.1	3.6
1.8	2.3	4.5
1.1	3.4	7.2

Convolution with multiple filters

5.4	0.1	3.6
1.8	2.3	4.5
1.1	3.4	7.2

Convolution over multiple channels

Convolution as a primitive

Convolution as a feature detector

 score at (x,y) = dot product (filter, image patch at (x,y))

Response represents similarity between filter and

image patch

Kernel sizes and padding

Kernel sizes and padding

Valid convolution decreases size by (k-1)/2 on each side

• Pad by (k-1)/2!

Valid convolution

The convolution unit

- Each convolutional unit takes a collection of feature maps as input, and produces a collection of feature maps as output
- Parameters: Filters (+bias)
- If c_{in} input feature maps and c_{out} output feature maps
 - Each filter is k x k x c_{in}
 - There are c_{out} such filters
- Other hyperparameters: padding

Invariance to distortions

Invariance to distortions

Invariance to distortions

Invariance to distortions: Pooling

Invariance to distortions: Subsampling

Convolution subsampling convolution

Convolution subsampling convolution

- Convolution in earlier steps detects more local patterns less resilient to distortion
- Convolution in later steps detects more global patterns more resilient to distortion
- Subsampling allows capture of larger, more invariant patterns

Strided convolution

- Convolution with stride s = standard convolution + subsampling by picking 1 value every s values
- Example: convolution with stride 2 = standard convolution + subsampling by a factor of 2

Visualizations from: M. Zeiler and R. Fergus. Visualizing and Understanding Convolutional Networks. In ECCV 2014.

Visualizations from: M. Zeiler and R. Fergus. Visualizing and Understanding Convolutional Networks. In ECCV 2014.

Convolutional Networks and the Brain

Slide credit: Jitendra Malik

Receptive fields of simple cells (discovered by Hubel & Wiesel)

Slide credit: Jitendra Malik

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. *Proceedings of the IEEE* 86.11 (1998): 2278-2324.

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

