

General recipe

Logistic Regression!

h(z;w,b) = o(w! ¢(z) + b)
* Define loss function

L(h(z;w,b),y) = —(ylogh(z; w,b) + (1 — y) log(1 — h(z; w, b))
* Minimize average loss on the training set using SGD

I?VI?NZL (x;, w,b),y;)

* Fix hypothesis class

Risk

* Given:
 Distribution D over (x,y) pairs
* A hypothesis h € H from hypothesis class H
* Loss function L

 We are interested in Expected Risk:
R(h) — E(m,y)wDL(h(‘/E)a y)

e Given training set S, and a particular hypothesis h,
Empirical Risk:

R(S ZL

(:U,y)ES

Generalization

R(h) = E¢y)~ L(h(z),y) Z L(h
(w y)ES

R(h) = R(S,h) + (R(h) — R(S, h))

Training Generalization
error error

Controlling generalization error

* How do we know we are overfitting?
* Use a held-out “validation set”
* To be an unbiased sample, must be completely unseen

Controlling generalization error

. V?riance of empirical risk inversely proportional to size
of S

* Choose very large S!

* Larger the hypothesis class H, Higher the chance of
hitting bad hypotheses with low training error and high
generalization error

* Choose small H!

* For many models, can bound generalization error using
some property of parameters

* Regularize during optimization!
* Eg. L2 regularization

Controlling the size of the
hypothesis class

h(z;w,b) = o(w' ¢(x) + b)

* How many parameters (w, b) are there to find?

* Depends on dimensionality of ¢

* Large dimensionality = large number of parameters
= more chance of overfitting

* Rule of thumb: size of training set should be at least
10x number of parameters

» Often training sets are much smaller

Regularization

* Old objective
N

1=1

* New objective

* Why does this help?

Regularization

N
min L(h(z;;w,b),y;) +)\HWHQ

w,b 4
1=1

* Ensures classifier does not weigh any one feature
too highly

* Makes sure classifier scores vary slowly when
image changes

Wi o(21) — W (x2)| < [[wlll|d(z1) — @(2)|

* Prevents “crazy hypotheses” that are unlikely

Generalization error and priors

* Regularization can be thought of as introducing
prior knowledge into the model

e L2-regularization: model output varies slowly as image
changes

* Biases the training to consider some hypotheses more
than others

* What if bias is wrong?

Bias and variance

* Two things characterize a learning algorithm

* Variance
* How sensitive is the algorithm to the training set?

* High variance = learnt model varies a lot depending on
training set

* High variance = overfitting, i.e., high generalization error
* Bias
* How much prior knowledge has been put in?

* If prior knowledge is wrong, model learnt will not be
able to achieve low loss (favors bad hypotheses in
general)

* High bias = underfitting, i.e., high training error

Bias and variance

3u1131449A0 = d3uellen Yy3siH

sumipepun = seiq ysiy

10443 159
10443 dululed|

Decreasing regularization 2

Putting it all together

 Want model with least expected risk = expected
loss

* But expected risk hard to evaluate

* Empirical Risk Minimization: minimize empirical risk
In training set

* Might end up picking special case: overfitting

* Avoid overfitting by:
e Constructing large training sets
* Reducing size of model class
* Regularization

Putting it all together

* Collect training set and validation set

* Pick hypothesis class

* Pick loss function

* Minimize empirical risk (+ regularization)

* Measure performance on held-out validation set
* Profit!

Loss functions and hypothesis

classes

Loss function Problem Range of h Yy Formula
Log loss Binary Classification R {0,1} log(1 + e ¥(®@)
Negative log likelihood Multiclass classification [0, 1]* {1,...,k} —log hy ()
Hinge loss Binary Classification R {0,1} max (0,1 — yh(z))
MSE Regression R R (y — h(x))?

Back to images
h(z;w,b) = o(w! ¢(x) + b)

* What should ¢ be?

e Simplest solution: string 2D image intensity values
into vector

Linear classifiers on pixels are bad

e Solution 1: Better feature vectors

e Solution 2: Non-linear classifiers

Better feature vectors

These must have different feature
vectors: discriminability

— T~

These must have similar feature
vectors: invariance

SIFT

* Match pattern of edges
* Edge orientation — clue to shape

* Be resilient to small deformations
* Deformations might move pixels around, but slightly

* Deformations might change edge orientations, but
slightly

The SIFT descriptor

\

X
4
—

x
FLN Y
¥

4
)

A
v
Wi/ 1>
¥
\‘—'
lk
7
Al
N
.\'\#“\,\/‘
|)/
v

Y\

Image gradients Keypoint descriptor

SIFT — Lowe 1JCV 2004

Same but different: HOG

Histogram of oriented gradients
Same as SIFT but without orientation
normalization. Why?

Invariance to large deformations

Invariance to large deformations

 Large deformations can cause objects / obf'ect parts to
move a lot (much more than single grid cell)

* Yet, object parts themselves have precise appearance

* |dea: want to represent the image as a “bag of object

”

Bags of words

Last night | dreamt | went to Manderley again.
It seemed to me | stood by the iron gate
leading to the drive, and for a while | could
not enter, for the way was barred to me.
There was a padlock and a chain upon the
gate. | called in my dream to the lodge-keeper,
and had no answer, and peering closer
through the rusted spokes of the gate | saw
that the lodge was uninhabited....

—)

dream
night
drive

locked

gate
lodge

uninhabited

Bags of visual words

What should be visual words?

* A word is a sequence of letters that commonly
occurs
e cthn is not a word, cotton is

* Typically such a sequence of letters means
something

* Visual words are image patches that frequently
occur

* How do we get these visual words?

What should be visual words?

* “Image patches that occur frequently”

e ..but obviously under small variations of color and
deformations

* Each occurrence of image patch is slightly different

What should be visual words?

* Consider representing each image patch with SIFT
descriptors

* Consider plotting them out in feature space

What should be visual words?

* Consider plotting SIFT feature vectors and
clustering them using k-means

* Fach k-means center is a visual word

l[dentifying the words in an image

e Given a new patch, we can assign it to the closest
center

l[dentifying the words in an image

* Given an image, take every patch and assign it to
the closest k-means center

* Each k-means center is a “word”

34 23 | 23

l[dentifying the words in an image

* Given an image, take every patch and assign it to

the closest k-means center
 Each k-means center is a “word”

34 14 23 23 34
34 19 7 3 34
34 56 7 24 56
45 13 98 45 38

7 7 34 77 29

Encoding images as bag of words

Densely extract image patches from image
* Compute SIFT vector for each patch

* Assign each patch to a visual word

* Compute histogram of occurrence

Too much invariance?

* Object parts appear in somewhat fixed
relationships

|dea: Spatial pyramids

* Divide the image into four parts

 Compute separate histogram in each part

‘i * Concatenate into a single feature vector H

h ;
B, Ad’f = t:TE-ﬁ_-,
il

i‘\‘

A pipeline for recognition

AN . Sl Compute Compute Assign to
= s PP e - A !
BN 9\ oS image SIFT k-means

gradients descriptors centers

-‘.‘

Horse Linear Compute

classifier histogram

Linear classifiers on pixels are bad

e Solution 1: Better feature vectors

e Solution 2: Non-linear classifiers

Non-linear classifiers

* Suppose we have a
feature vector for every
Image

Non-linear classifiers

e Suppose we have a
feature vector for every
image

* Linear classifier

Non-linear classifiers

* Suppose we have a
feature vector for every
Image

* Linear classifier

* Nearest neighbor:
assign each point the
label of the nearest
neighbor

Non-linear classifiers

* Suppose we have a
feature vector for every

Image
* Linear classifier
* Nearest neighbor: ®
assign each point the

label of the nearest ®
neighbor

e Decision tree: series of
if-then-else statements T
on different features

Non-linear classifiers

* Suppose we have a
feature vector for every
Image

* Linear classifier

* Nearest neighbor: ®
assign each point the
label of the nearest ®
neighbor

e Decision tree: series of
if-then-else statements o0
on different features

* Neural networks

