
Recognition - III



General recipe

• Fix hypothesis class

• Define loss function

• Minimize total loss on the training set

• Equivalent to minimizing the average loss

h(x;w, b) = �(wT�(x) + b)

min
w,b

NX

i=1

L(h(xi;w, b), yi)

Logistic Regression!

L(h(x;w, b), y) = �(y log h(x;w, b) + (1� y) log(1� h(x;w, b))

min
w,b

1

N

NX

i=1

L(h(xi,w, b), yi)



Machine learning is optimization

min
w,b

1

N

NX

i=1

L(h(xi,w, b), yi) ⌘ min
✓

F (✓)



Optimization using gradient 
descent
• Randomly initialize ! "

• For i = 1 to max_iterations:
• Compute gradient of F at ! #

• ! #$% ← ! # − (∇*(! # )
• Function value will decrease by (||∇* ! # ||.

• Repeat until ||∇* ! # ||. drops below a threshold



Gradient descent

https://yihui.name/animation/example/grad-desc/



Gradient descent - convergence

• Every step leads to a reduction in the function 
value
• If function is bounded below, we will eventually 

stop 
• But will we stop at the right “global minimum”?
• Not necessarily: local optimum!

Local min

Global 
min



Gradient descent in machine 
learning

• Computing the gradient requires a loop over all 
training examples
• Very expensive for large datasets

min
w,b

1

N

NX

i=1

L(h(xi,w, b), yi) ⌘ min
✓

F (✓)

rF (✓) =
1

N

NX

i=1

rL(h(xi,w, b), yi)



Stochastic gradient descent

• Randomly sample small subset of examples
• Compute gradient on small subset
• Unbiased estimate of true gradient

• Take step along estimated gradient

rF (✓) =
1

N

NX

i=1

rL(h(xi,w, b), yi)

rF (✓) ⇡ 1

K

KX

k=1

rL(h(xik ,w, b), yik)



General recipe

• Fix hypothesis class

• Define loss function

• Minimize average loss on the training set using SGD

h(x;w, b) = �(wT�(x) + b)

Logistic Regression!

L(h(x;w, b), y) = �(y log h(x;w, b) + (1� y) log(1� h(x;w, b))

min
w,b

1

N

NX

i=1

L(h(xi,w, b), yi)



General recipe

• Fix hypothesis class

• Define loss function

• Minimize average loss on the training set using SGD

• Why should this work?

h(x;w, b) = �(wT�(x) + b)

L(h(x;w, b), y) = �(y log h(x;w, b) + (1� y) log(1� h(x;w, b))

min
w,b

1

N

NX

i=1

L(h(xi,w, b), yi)



Why should this work?

• Let us look at the objective more carefully

• We are minimizing average loss on the training set
• Is this what we actually care about?

min
w,b

1

N

NX

i=1

L(h(xi,w, b), yi)



Risk

• Given:
• Distribution       over (x,y) pairs
• A hypothesis                 from hypothesis class H
• Loss function L

• We are interested in Expected Risk:

• Given training set S, and a particular hypothesis h, 
Empirical Risk:

D
h 2 H

R(h) = E(x,y)⇠DL(h(x), y)

R̂(S, h) =
1

|S|
X

(x,y)2S

L(h(x), y)



Risk

• Left: true quantity of interest, right: estimate
• How good is this estimate?
• If h is randomly chosen, actually a pretty good 

estimate!
• In statistics-speak, it is an unbiased estimator : correct in 

expectation 

R(h) = E(x,y)⇠DL(h(x), y)
R̂(S, h) =

1

|S|
X

(x,y)2S

L(h(x), y)

ES⇠DnR̂(S, h) = R(h)



Risk

• Empirical risk unbiased estimate of expected risk
• Want to minimize expected risk
• Idea: Minimize empirical risk instead
• This is the Empirical Risk Minimization Principle

h⇤ = arg min
h2H

R̂(S, h)

R(h) = E(x,y)⇠DL(h(x), y) R̂(S, h) =
1

|S|
X

(x,y)2S

L(h(x), y)



Overfitting

• For randomly chosen h, empirical risk (training 
error) good estimate of expected risk
• But we are choosing h by minimizing training error
• Empirical risk of chosen hypothesis no longer 

unbiased estimate:
• We chose hypothesis based on S
• Might have chosen h for which S is a special case

• Overfitting:
• Minimize training error, but generalization error 

increases



Overfitting = fitting the noise

True distribution

Minim
ize

r o
f e

xpecte
d ris

k

Minimizer of empirical risk

Sampled training set



Generalization

R(h) = R̂(S, h) + (R(h)� R̂(S, h))

Training 
error

Generalization 
error

R(h) = E(x,y)⇠DL(h(x), y) R̂(S, h) =
1

|S|
X

(x,y)2S

L(h(x), y)



Controlling generalization error

• How do we know we are overfitting?
• Use a held-out “validation set”
• To be an unbiased sample, must be completely unseen



Controlling generalization error

• Variance of empirical risk inversely proportional to size 
of S
• Choose very large S!

• Larger the hypothesis class H, Higher the chance of 
hitting bad hypotheses with low training error and high 
generalization error
• Choose small H!

• For many models, can bound generalization error using 
some property of parameters
• Regularize during optimization!
• Eg. L2 regularization



Controlling the size of the 
hypothesis class

• How many parameters (w, b) are there to find?
• Depends on dimensionality of !
• Large dimensionality = large number of parameters 

= more chance of overfitting
• Rule of thumb: size of training set should be at least 

10x number of parameters
• Often training sets are much smaller 

h(x;w, b) = �(wT�(x) + b)



Regularization

• Old objective

• New objective

• Why does this help?

min
w,b

NX

i=1

L(h(xi;w, b), yi)

min
w,b

NX

i=1

L(h(xi;w, b), yi) + �kwk2



Regularization

• Ensures classifier does not weigh any one feature 
too highly
• Makes sure classifier scores vary slowly when 

image changes

• Prevents “crazy hypotheses” that are unlikely

min
w,b

NX

i=1

L(h(xi;w, b), yi) + �kwk2

|wT�(x1)�wT�(x2)|  kwkk�(x1)� �(x2)k



Generalization error and priors

• Regularization can be thought of as introducing 
prior knowledge into the model
• L2-regularization: model output varies slowly as image

changes
• Biases the training to consider some hypotheses more 

than others
• What if bias is wrong?



Bias and variance

• Two things characterize a learning algorithm
• Variance
• How sensitive is the algorithm to the training set?
• High variance = learnt model varies a lot depending on

training set
• High variance = overfitting, i.e., high generalization error

• Bias
• How much prior knowledge has been put in?
• If prior knowledge is wrong, model learnt will not be

able to achieve low loss (favors bad hypotheses in 
general)
• High bias = underfitting, i.e., high training error



Bias and variance

Decreasing regularization à

Tr
ai

ni
ng

 e
rr

or
 

Te
st

 e
rr

or

Hi
gh

 b
ia

s =
 u

nd
er

fit
tin

g

Hi
gh

 va
ria

nc
e 

= 
ov

er
fit

tin
g



Putting it all together

• Want model with least expected risk = expected 
loss
• But expected risk hard to evaluate
• Empirical Risk Minimization: minimize empirical risk 

in training set
• Might end up picking special case: overfitting
• Avoid overfitting by:
• Constructing large training sets
• Reducing size of model class
• Regularization



Putting it all together

• Collect training set and validation set
• Pick hypothesis class
• Pick loss function
• Minimize empirical risk (+ regularization)
• Measure performance on held-out validation set
• Profit!



Loss functions and hypothesis 
classes



Back to images

• What should ! be?
• Simplest solution: string 2D image intensity values 

into vector

h(x;w, b) = �(wT�(x) + b)



Linear classifiers on pixels are bad

• Solution 1: Better feature vectors
• Solution 2: Non-linear classifiers



Better feature vectors

These must have similar feature 
vectors: invariance

These must have different feature 
vectors: discriminability



SIFT

• Match pattern of edges
• Edge orientation – clue to shape

• Be resilient to small deformations
• Deformations might move pixels around, but slightly
• Deformations might change edge orientations, but 

slightly



The SIFT descriptor

SIFT – Lowe IJCV 2004



Same but different: HOG

Histogram of oriented gradients
Same as SIFT but without orientation

normalization. Why?



Invariance to large deformations



Invariance to large deformations

• Large deformations can cause objects / object parts to 
move a lot (much more than single grid cell)
• Yet, object parts themselves have precise appearance

• Idea: want to represent the image as a “bag of object 
parts”



Bags of words

Last night I dreamt I went to Manderley again. 
It seemed to me I stood by the iron gate 

leading to the drive, and for a while I could 
not enter, for the way was barred to me. 

There was a padlock and a chain upon the 
gate. I called in my dream to the lodge-keeper, 

and had no answer, and peering closer 
through the rusted spokes of the gate I saw 

that the lodge was uninhabited….

gate
lodge

drive
night

dream

locked

uninhabited



Bags of visual words



What should be visual words?

• A word is a sequence of letters that commonly 
occurs
• cthn is not a word, cotton is

• Typically such a sequence of letters means 
something
• Visual words are image patches that frequently 

occur
• How do we get these visual words?



What should be visual words?

• “Image patches that occur frequently”
• ..but obviously under small variations of color and 

deformations
• Each occurrence of image patch is slightly different



What should be visual words?

• Consider representing each image patch with SIFT 
descriptors
• Consider plotting them out in feature space



What should be visual words?

• Consider plotting SIFT feature vectors and 
clustering them using k-means



What should be visual words?

• Given a new patch, we can assign each patch to the 
closest center



Identifying the words in an image

• Given a new patch, we can assign each patch to the 
closest center



Identifying the words in an image

• Given an image, take every patch and assign it to 
the closest k-means center
• Each k-means center is a “word”

34 14 23 23



Identifying the words in an image

• Given an image, take every patch and assign it to 
the closest k-means center
• Each k-means center is a “word”

34 14 23 23 34

34 19 7 8 34

34 56 7 24 56

45 13 98 45 38

7 7 34 77 29



Encoding images as bag of words

• Densely extract image patches from image
• Compute SIFT vector for each patch
• Assign each patch to a visual word
• Compute histogram of occurrence



Too much invariance?

• Object parts appear in somewhat fixed 
relationships



Idea: Spatial pyramids
• Divide the image into four parts
• Compute separate histogram in each part
• Concatenate into a single feature vector



Linear classifiers on pixels are bad

• Solution 1: Better feature vectors
• Solution 2: Non-linear classifiers



Non-linear classifiers

• Suppose we have a 
feature vector for every 
image



Non-linear classifiers

• Suppose we have a 
feature vector for every 
image
• Linear classifier



Non-linear classifiers

• Suppose we have a 
feature vector for every 
image
• Linear classifier
• Nearest neighbor:

assign each point the 
label of the nearest
neighbor



Non-linear classifiers

• Suppose we have a 
feature vector for every 
image
• Linear classifier
• Nearest neighbor:

assign each point the 
label of the nearest
neighbor
• Decision tree: series of 

if-then-else statements 
on different features



Non-linear classifiers

• Suppose we have a 
feature vector for every 
image
• Linear classifier
• Nearest neighbor:

assign each point the 
label of the nearest
neighbor
• Decision tree: series of 

if-then-else statements 
on different features
• Neural networks


