Recognition |

General recipe

* Fix hypothesis class
h(z;w,b) = o(w ¢(z) + b)
* Define loss function
L(h(z;w,b),y) = —ylog h(z;w,b) + (1 —y)log(1 — h(z; w, b))
* Minimize total loss on the training set

* Why should this work?
* How do we do the minimization in practice?

Training = Optimization

* Need to minimize an objective

* More generally, objective takes the form

N
1=1

Training = optimization

N
meian(azi,yi,H) = meln F(H)
1=1
* How do we minimize this?
e Start from an initial estimate

* |teratively reduce F. How?

Optimization and function
gradients

* Suppose current estimate is o)
e Consider changing this to 8) + A
* How does the objective value change?

* For small A@, can approximate F using Taylor
expansion
* Fislocally linear

FOY + A0) ~ F(OW) + VF(OTAB
= F(0Y + A0) — F(0Y) =~ VF(0TA@

Optimization and function
gradients

= F(0Y + Ag) — F(0) ~ VF(0)TAB

« We want F(0'Y + A8) — F(0')) to be negative
* As highly negative as possible

* So we want VF(0Y)T Ag to be as negative as
possible

AO = - AVE(OD)
= VF(OTAG = —\|VF(0')|?

e Ais step size

Optimization using gradient
descent

* Randomly initialize 8(®

* Fori=1to max_iterations:
 Compute gradient of F at o)
e 91D 9() — QVF(01)
* Function value will decrease by A| |VF(9(t))| |2
* Repeat until ||VF(0(t))||2 drops below a threshold

Gradient descent

https://yihui.name/animation/example/grad-desc/

Gradient descent - convergence

 Every step leads to a reduction in the function
value

* If function is bounded below, we will eventually
stop

* But will we stop at the right “global minimum”?
* Not necessarily: local optimum!

e

Gradient descent in machine
learning

N
1=1
N

VE(0) =Y Vf(i,y:.0)

 Computing the gradient requires a loop over all
training examples

* Very expensive for large datasets

Stochastic gradient descent

N
VF(0) =) Vf(zi,y:0)
=1

K
VF(0) ~ Z V(i yi,,0)
j=1

 Randomly sample small subset of examples

* Compute gradient on small subset
* Unbiased estimate of true gradient

» Take step along estimated gradient

General recipe

Logistic Regression!

h(z;w,b) = o(w! ¢(z) + b)

e Define loss function
L(h(z;w,b),y) = —ylog h(z;w,b) + (1 — y)log(1 — h(z; w,b))

* Fix hypothesis class

* Minimize total loss on the training set using SGD
N

min Y L(h(z;;w,b),y;)

1=1

General recipe

* Fix hypothesis class
h(z;w,b) = o(w" ¢(z) + b)
* Define loss function
L(h(z;w,b),y) = —ylog h(z;w,b) + (1 — y)log(1 — h(z; w,b))

* Minimize total loss on the training set using SGD
N

min Y L(h(z;;w,b),y;)

1=1

* Why should this work?

Why should this work?

* Let us look at the objective more carefully

N
min Y L(h(z;;w,b),y;)
wb
|

* We are basically minimizing average loss on the
training set

* Is this what we actually care about?

Risk

* Given:
 Distribution D over (x,y) pairs
* A hypothesis h € H from hypothesis class H
* Loss function L

 We are interested in Expected Risk:
R(h) — E(m,y)wDL(h(‘/E)a y)

e Given training set S, and a particular hypothesis h,
Empirical Risk:

R(S ZL

(:U,y)ES

Risk

R(S L(h
R(h) = E(;)~pL(h(z),y) (w% <

e Left: true quantity of interest, right: estimate
* How good is this estimate?

 If his randomly chosen, actually a pretty good
estimate!

* |n statistics-spealk, it is an unbiased estimator : correct in
expectation

<1:SND”R(Sv h) — R(h)

Risk

* Empirical risk unbiased estimate of expected risk
* Want to minimize expected risk

 |dea: Minimize empirical risk instead

* This is the Empirical Risk Minimization Principle

R(h) = EqypnpLih(e)y) RSH) =15 > Lik
(x,y)GS

h* = arg hmellg R(S, h)

Overfitting

* For randomly chosen h, empirical risk (training
error) good estimate of expected risk

* But we are choosing h by minimizing training error

* Empirical risk of chosen hypothesis no longer
unbiased estimate:
* We chose hypothesis based on S
* Might have chosen h for which S is a special case

e Overfitting:

* Minimize training error, but generalization error
increases

Overfitting = fitting the noise

Minimizer of empirical risk

True distribution Sampled training set

Generalization

R(h) = E¢y)~ L(h(z),y) Z L(h
(w y)ES

R(h) = R(S,h) + (R(h) — R(S, h))

Training Generalization
error error

Controlling generalization error

. V?riance of empirical risk inversely proportional to size
of S

* Choose very large S!

* Larger the hypothesis class H, Higher the chance of
hitting bad hypotheses with low training error and high
generalization error

* Choose small H!

* For many models, can bound generalization error using
some property of parameters

* Regularize during optimization!
* Eg. L2 regularization

Controlling the size of the
hypothesis class

h(z;w,b) = o(w' ¢(x) + b)

* How many parameters (w, b) are there to find?

* Depends on dimensionality of ¢

* Large dimensionality = large number of parameters
= more chance of overfitting

* Rule of thumb: size of training set should be at least
10x number of parameters

» Often training sets are much smaller

Regularization

* Old objective
N

1=1

* New objective

* Why does this help?

Regularization

N
: I . . 2
%},”,?Z (h(wi; w,b),y:) + Al[w]|

1=1

* Ensures classifier does not weigh any one feature
too highly

* Makes sure classifier scores vary slowly when
image changes

Wi o(21) — W (x2)| < [[wlll|d(z1) — @(2)|

Controlling generalization error

* How do we know we are overfitting?
* Use a held-out “validation set”
* To be an unbiased sample, must be completely unseen

Putting it all together

 Want model with least expected risk = expected
loss

* But expected risk hard to evaluate

* Empirical Risk Minimization: minimize empirical risk
In training set

* Might end up picking special case: overfitting

* Avoid overfitting by:
e Constructing large training sets
* Reducing size of model class
* Regularization

Putting it all together

* Collect training set and validation set

* Pick hypothesis class

* Pick loss function

* Minimize empirical risk (+ regularization)

* Measure performance on held-out validation set
* Profit!

Loss functions and hypothesis

classes

Loss function Problem Range of h Yy Formula
Log loss Binary Classification R {0,1} log(1 + e ¥(®@)
Negative log likelihood Multiclass classification [0, 1]* {1,...,k} —log hy ()
Hinge loss Binary Classification R {0,1} max (0,1 — yh(z))
MSE Regression R R (y — h(x))?

Back to images
h(z;w,b) = o(w! ¢(x) + b)

* What should ¢ be?

e Simplest solution: string 2D image intensity values
into vector

Linear classifiers on pixels are bad

e Solution 1: Better feature vectors

e Solution 2: Non-linear classifiers

Better feature vectors

These must have different feature
vectors: discriminability

— T~

These must have similar feature
vectors: invariance

Better feature vectors

* [nvariance to
* |[lumination
e Deformation
* Translations/ rotations

Color and Lighting

Out-of-plane rotation

Out-of-plane rotation

SIFT

* Match pattern of edges
* Edge orientation — clue to shape

* Be resilient to small deformations
* Deformations might move pixels around, but slightly

* Deformations might change edge orientations, but
slightly

Invariance to deformation by

guantization

~

Between 30 and 45

Invariance to deformation by
guantization

0 if 0 <0 <27/N
1 if 2r/N < 6 <4n/N
g0) =< 2 if dr/N < 6 < 67/N

N-1 if 2(N — 1) /N

Spatial invariance by histograms

N7

2 blue balls, one red box

balls boxes

Rotation Invariance by Orientation
Normalization {Lowe, SIFT, 1958

 Compute orientation histogram
* Select dominant orientation

* Normalize: rotate to fixed orientation

! e

The SIFT descriptor

\

X
4
—

x
FLN Y
¥

4
)

A
v
Wi/ 1>
¥
\‘—'
lk
7
Al
N
.\'\#“\,\/‘
|)/
v

Y\

Image gradients Keypoint descriptor

SIFT — Lowe 1JCV 2004

Same but different: HOG

Histogram of oriented gradients
Same as SIFT but without orientation
normalization. Why?

Invariance to large deformations

Invariance to large deformations

 Large deformations can cause objects / obf'ect parts to
move a lot (much more than single grid cell)

* Yet, object parts themselves have precise appearance

* |dea: want to represent the image as a “bag of object

”

