
Recognition II

General recipe

• Fix hypothesis class

• Define loss function

• Minimize total loss on the training set

• Why should this work?
• How do we do the minimization in practice?

h(x;w, b) = �(wT�(x) + b)

L(h(x;w, b), y) = �y log h(x;w, b) + (1� y) log(1� h(x;w, b))

min
w,b

NX

i=1

L(h(xi;w, b), yi)

Training = Optimization

• Need to minimize an objective

• More generally, objective takes the form

min
w,b

NX

i=1

L(h(xi;w, b), yi)

min
✓

NX

i=1

f(xi, yi,✓) ⌘ min
✓

F (✓)

Training = optimization

• How do we minimize this?
• Start from an initial estimate
• Iteratively reduce F. How?

min
✓

NX

i=1

f(xi, yi,✓) ⌘ min
✓

F (✓)

Optimization and function
gradients
• Suppose current estimate is !(#)
• Consider changing this to ! # + Δ!
• How does the objective value change?
• For small Δ!, can approximate F using Taylor

expansion
• F is locally linear

F (✓(t) +�✓) ⇡ F (✓(t)) +rF (✓(t))T�✓

) F (✓(t) +�✓)� F (✓(t)) ⇡ rF (✓(t))T�✓

Optimization and function
gradients

• We want to be negative
• As highly negative as possible

• So we want to be as negative as
possible

• ! is step size

F (✓(t) +�✓)� F (✓(t))

rF (✓(t))T�✓

�✓ = ��rF (✓(t))

) rF (✓(t))T�✓ = ��krF (✓(t))k2

) F (✓(t) +�✓)� F (✓(t)) ⇡ rF (✓(t))T�✓

Optimization using gradient
descent
• Randomly initialize ! "

• For i = 1 to max_iterations:
• Compute gradient of F at ! #

• ! #$% ← ! # − (∇*(! #)
• Function value will decrease by (||∇* ! # ||.

• Repeat until ||∇* ! # ||. drops below a threshold

Gradient descent

https://yihui.name/animation/example/grad-desc/

Gradient descent - convergence

• Every step leads to a reduction in the function
value
• If function is bounded below, we will eventually

stop
• But will we stop at the right “global minimum”?
• Not necessarily: local optimum!

Local min

Global
min

Gradient descent in machine
learning

• Computing the gradient requires a loop over all
training examples
• Very expensive for large datasets

min
✓

NX

i=1

f(xi, yi,✓) ⌘ min
✓

F (✓)

rF (✓) =
NX

i=1

rf(xi, yi,✓)

Stochastic gradient descent

• Randomly sample small subset of examples
• Compute gradient on small subset
• Unbiased estimate of true gradient

• Take step along estimated gradient

rF (✓) =
NX

i=1

rf(xi, yi,✓)

rF (✓) ⇡
KX

j=1

rf(xij , yij ,✓)

General recipe

• Fix hypothesis class

• Define loss function

• Minimize total loss on the training set using SGD

h(x;w, b) = �(wT�(x) + b)

L(h(x;w, b), y) = �y log h(x;w, b) + (1� y) log(1� h(x;w, b))

min
w,b

NX

i=1

L(h(xi;w, b), yi)

Logistic Regression!

General recipe

• Fix hypothesis class

• Define loss function

• Minimize total loss on the training set using SGD

• Why should this work?

h(x;w, b) = �(wT�(x) + b)

L(h(x;w, b), y) = �y log h(x;w, b) + (1� y) log(1� h(x;w, b))

min
w,b

NX

i=1

L(h(xi;w, b), yi)

Why should this work?

• Let us look at the objective more carefully

• We are basically minimizing average loss on the
training set
• Is this what we actually care about?

min
w,b

NX

i=1

L(h(xi;w, b), yi)

⌘ min
w,b

1

N

NX

i=1

L(h(xi;w, b), yi)

Risk

• Given:
• Distribution over (x,y) pairs
• A hypothesis from hypothesis class H
• Loss function L

• We are interested in Expected Risk:

• Given training set S, and a particular hypothesis h,
Empirical Risk:

D
h 2 H

R(h) = E(x,y)⇠DL(h(x), y)

R̂(S, h) =
1

|S|
X

(x,y)2S

L(h(x), y)

Risk

• Left: true quantity of interest, right: estimate
• How good is this estimate?
• If h is randomly chosen, actually a pretty good

estimate!
• In statistics-speak, it is an unbiased estimator : correct in

expectation

R(h) = E(x,y)⇠DL(h(x), y)
R̂(S, h) =

1

|S|
X

(x,y)2S

L(h(x), y)

ES⇠DnR̂(S, h) = R(h)

Risk

• Empirical risk unbiased estimate of expected risk
• Want to minimize expected risk
• Idea: Minimize empirical risk instead
• This is the Empirical Risk Minimization Principle

h⇤ = arg min
h2H

R̂(S, h)

R(h) = E(x,y)⇠DL(h(x), y) R̂(S, h) =
1

|S|
X

(x,y)2S

L(h(x), y)

Overfitting

• For randomly chosen h, empirical risk (training
error) good estimate of expected risk
• But we are choosing h by minimizing training error
• Empirical risk of chosen hypothesis no longer

unbiased estimate:
• We chose hypothesis based on S
• Might have chosen h for which S is a special case

• Overfitting:
• Minimize training error, but generalization error

increases

Overfitting = fitting the noise

True distribution

Minim
ize

r o
f e

xpecte
d ris

k

Minimizer of empirical risk

Sampled training set

Generalization

R(h) = R̂(S, h) + (R(h)� R̂(S, h))

Training
error

Generalization
error

R(h) = E(x,y)⇠DL(h(x), y) R̂(S, h) =
1

|S|
X

(x,y)2S

L(h(x), y)

Controlling generalization error

• Variance of empirical risk inversely proportional to size
of S
• Choose very large S!

• Larger the hypothesis class H, Higher the chance of
hitting bad hypotheses with low training error and high
generalization error
• Choose small H!

• For many models, can bound generalization error using
some property of parameters
• Regularize during optimization!
• Eg. L2 regularization

Controlling the size of the
hypothesis class

• How many parameters (w, b) are there to find?
• Depends on dimensionality of !
• Large dimensionality = large number of parameters

= more chance of overfitting
• Rule of thumb: size of training set should be at least

10x number of parameters
• Often training sets are much smaller

h(x;w, b) = �(wT�(x) + b)

Regularization

• Old objective

• New objective

• Why does this help?

min
w,b

NX

i=1

L(h(xi;w, b), yi)

min
w,b

NX

i=1

L(h(xi;w, b), yi) + �kwk2

Regularization

• Ensures classifier does not weigh any one feature
too highly
• Makes sure classifier scores vary slowly when

image changes

min
w,b

NX

i=1

L(h(xi;w, b), yi) + �kwk2

|wT�(x1)�wT�(x2)|  kwkk�(x1)� �(x2)k

Controlling generalization error

• How do we know we are overfitting?
• Use a held-out “validation set”
• To be an unbiased sample, must be completely unseen

Putting it all together

• Want model with least expected risk = expected
loss
• But expected risk hard to evaluate
• Empirical Risk Minimization: minimize empirical risk

in training set
• Might end up picking special case: overfitting
• Avoid overfitting by:
• Constructing large training sets
• Reducing size of model class
• Regularization

Putting it all together

• Collect training set and validation set
• Pick hypothesis class
• Pick loss function
• Minimize empirical risk (+ regularization)
• Measure performance on held-out validation set
• Profit!

Loss functions and hypothesis
classes

Back to images

• What should ! be?
• Simplest solution: string 2D image intensity values

into vector

h(x;w, b) = �(wT�(x) + b)

Linear classifiers on pixels are bad

• Solution 1: Better feature vectors
• Solution 2: Non-linear classifiers

Better feature vectors

These must have similar feature
vectors: invariance

These must have different feature
vectors: discriminability

Better feature vectors

• Invariance to
• Illumination
• Deformation
• Translations/ rotations

Color and Lighting

Out-of-plane rotation

Out-of-plane rotation

SIFT

• Match pattern of edges
• Edge orientation – clue to shape

• Be resilient to small deformations
• Deformations might move pixels around, but slightly
• Deformations might change edge orientations, but

slightly

Invariance to deformation by
quantization

37 42

Between 30 and 45

Invariance to deformation by
quantization

g(✓) =

8
>>>><

>>>>:

0 if 0 < ✓ < 2⇡/N
1 if 2⇡/N < ✓ < 4⇡/N
2 if 4⇡/N < ✓ < 6⇡/N

. . .
N � 1 if 2(N � 1)⇡/N

Spatial invariance by histograms

2 blue balls, one red box

balls boxes

2

1

T. Tuytelaars, B. Leibe

Rotation Invariance by Orientation
Normalization
• Compute orientation histogram
• Select dominant orientation
• Normalize: rotate to fixed orientation

0 2p

[Lowe, SIFT, 1999]

The SIFT descriptor

SIFT – Lowe IJCV 2004

Same but different: HOG

Histogram of oriented gradients
Same as SIFT but without orientation

normalization. Why?

Invariance to large deformations

Invariance to large deformations

• Large deformations can cause objects / object parts to
move a lot (much more than single grid cell)
• Yet, object parts themselves have precise appearance

• Idea: want to represent the image as a “bag of object
parts”

