Recognition II

General recipe

Fix hypothesis class

$$h(x; \mathbf{w}, b) = \sigma(\mathbf{w}^T \phi(x) + b)$$

Define loss function

$$L(h(x; \mathbf{w}, b), y) = -y \log h(x; \mathbf{w}, b) + (1 - y) \log(1 - h(x; \mathbf{w}, b))$$

Minimize total loss on the training set

$$\min_{\mathbf{w},b} \sum_{i=1}^{N} L(h(x_i; \mathbf{w}, b), y_i)$$

- Why should this work?
- How do we do the minimization in practice?

Training = Optimization

Need to minimize an objective

$$\min_{\mathbf{w},b} \sum_{i=1}^{N} L(h(x_i; \mathbf{w}, b), y_i)$$

More generally, objective takes the form

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{N} f(x_i, y_i, \boldsymbol{\theta}) \equiv \min_{\boldsymbol{\theta}} F(\boldsymbol{\theta})$$

Training = optimization

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{N} f(x_i, y_i, \boldsymbol{\theta}) \equiv \min_{\boldsymbol{\theta}} F(\boldsymbol{\theta})$$

- How do we minimize this?
- Start from an initial estimate
- Iteratively reduce F. How?

Optimization and function gradients

- Suppose current estimate is $m{ heta}^{(t)}$
- Consider changing this to $\boldsymbol{\theta}^{(t)} + \Delta \boldsymbol{\theta}$
- How does the objective value change?
- For small $\Delta \theta$, can approximate F using Taylor expansion
 - F is locally linear

$$F(\boldsymbol{\theta}^{(t)} + \Delta \boldsymbol{\theta}) \approx F(\boldsymbol{\theta}^{(t)}) + \nabla F(\boldsymbol{\theta}^{(t)})^T \Delta \boldsymbol{\theta}$$

$$\Rightarrow F(\boldsymbol{\theta}^{(t)} + \Delta \boldsymbol{\theta}) - F(\boldsymbol{\theta}^{(t)}) \approx \nabla F(\boldsymbol{\theta}^{(t)})^T \Delta \boldsymbol{\theta}$$

Optimization and function gradients

$$\Rightarrow F(\boldsymbol{\theta}^{(t)} + \Delta \boldsymbol{\theta}) - F(\boldsymbol{\theta}^{(t)}) \approx \nabla F(\boldsymbol{\theta}^{(t)})^T \Delta \boldsymbol{\theta}$$

- We want $F(\boldsymbol{\theta}^{(t)} + \Delta \boldsymbol{\theta}) F(\boldsymbol{\theta}^{(t)})$ to be negative
 - As highly negative as possible
- So we want $\nabla F(\boldsymbol{\theta}^{(t)})^T \Delta \boldsymbol{\theta}$ to be as negative as possible

$$\Delta \boldsymbol{\theta} = -\lambda \nabla F(\boldsymbol{\theta}^{(t)})$$

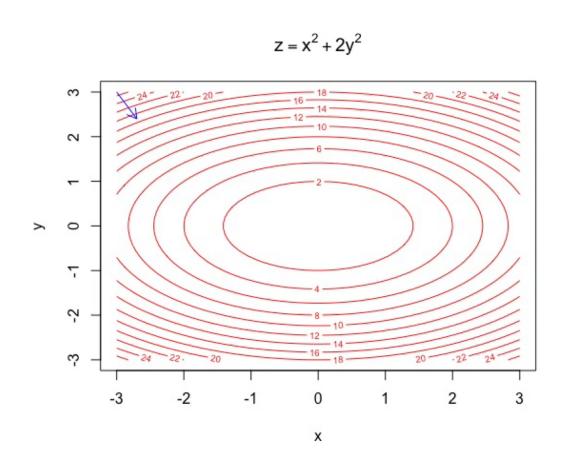
$$\Rightarrow \nabla F(\boldsymbol{\theta}^{(t)})^T \Delta \boldsymbol{\theta} = -\lambda \|\nabla F(\boldsymbol{\theta}^{(t)})\|^2$$

• λ is step size

Optimization using gradient descent

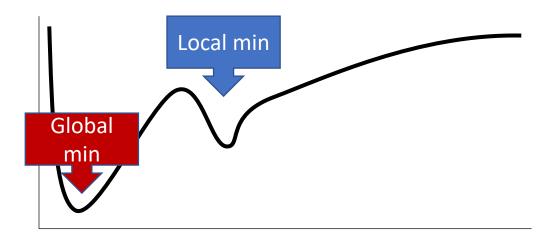
- Randomly initialize $oldsymbol{ heta}^{(0)}$
- For i = 1 to max_iterations:
 - Compute gradient of F at $oldsymbol{ heta}^{(t)}$
 - $\boldsymbol{\theta}^{(t+1)} \leftarrow \boldsymbol{\theta}^{(t)} \lambda \nabla F(\boldsymbol{\theta}^{(t)})$
 - Function value will decrease by $\lambda ||\nabla F(\boldsymbol{\theta}^{(t)})||^2$
 - Repeat until $||\nabla F(\boldsymbol{\theta}^{(t)})||^2$ drops below a threshold

Gradient descent



Gradient descent - convergence

- Every step leads to a reduction in the function value
- If function is bounded below, we will eventually stop
- But will we stop at the right "global minimum"?
 - Not necessarily: local optimum!



Gradient descent in machine learning

$$egin{aligned} \min_{m{ heta}} \sum_{i=1}^N f(x_i, y_i, m{ heta}) &\equiv \min_{m{ heta}} F(m{ heta}) \
abla F(m{ heta}) &= \sum_{i=1}^N
abla f(x_i, y_i, m{ heta}) \end{aligned}$$

- Computing the gradient requires a loop over all training examples
- Very expensive for large datasets

Stochastic gradient descent

$$\nabla F(\boldsymbol{\theta}) = \sum_{i=1}^{N} \nabla f(x_i, y_i, \boldsymbol{\theta})$$
$$\nabla F(\boldsymbol{\theta}) \approx \sum_{i=1}^{K} \nabla f(x_{i_j}, y_{i_j}, \boldsymbol{\theta})$$

- Randomly sample small subset of examples
- Compute gradient on small subset
 - Unbiased estimate of true gradient
- Take step along estimated gradient

General recipe

Logistic Regression!

Fix hypothesis class

$$h(x; \mathbf{w}, b) = \sigma(\mathbf{w}^T \phi(x) + b)$$

Define loss function

$$L(h(x; \mathbf{w}, b), y) = -y \log h(x; \mathbf{w}, b) + (1 - y) \log(1 - h(x; \mathbf{w}, b))$$

Minimize total loss on the training set using SGD

$$\min_{\mathbf{w},b} \sum_{i=1}^{N} L(h(x_i; \mathbf{w}, b), y_i)$$

General recipe

• Fix hypothesis class

$$h(x; \mathbf{w}, b) = \sigma(\mathbf{w}^T \phi(x) + b)$$

Define loss function

$$L(h(x; \mathbf{w}, b), y) = -y \log h(x; \mathbf{w}, b) + (1 - y) \log(1 - h(x; \mathbf{w}, b))$$

Minimize total loss on the training set using SGD

$$\min_{\mathbf{w},b} \sum_{i=1}^{N} L(h(x_i; \mathbf{w}, b), y_i)$$

Why should this work?

Why should this work?

Let us look at the objective more carefully

$$\min_{\mathbf{w},b} \sum_{i=1}^{N} L(h(x_i; \mathbf{w}, b), y_i)$$

$$\equiv \min_{\mathbf{w},b} \frac{1}{N} \sum_{i=1}^{N} L(h(x_i; \mathbf{w}, b), y_i)$$

- We are basically minimizing average loss on the training set
- Is this what we actually care about?

Risk

- Given:
 - Distribution \mathcal{D} over (x,y) pairs
 - A hypothesis $h \in H$ from hypothesis class H
 - Loss function L
- We are interested in Expected Risk:

$$R(h) = \mathbb{E}_{(x,y)\sim\mathcal{D}}L(h(x),y)$$

 Given training set S, and a particular hypothesis h, Empirical Risk:

$$\hat{R}(S,h) = \frac{1}{|S|} \sum_{(x,y) \in S} L(h(x), y)$$

Risk

$$R(h) = \mathbb{E}_{(x,y)\sim\mathcal{D}}L(h(x),y) \qquad \hat{R}(S,h) = \frac{1}{|S|} \sum_{(x,y)\in S} L(h(x),y)$$

- Left: true quantity of interest, right: estimate
- How good is this estimate?
- If h is randomly chosen, actually a pretty good estimate!
 - In statistics-speak, it is an *unbiased estimator*: correct in expectation

$$\mathbb{E}_{S \sim \mathcal{D}^n} \hat{R}(S, h) = R(h)$$

Risk

- Empirical risk unbiased estimate of expected risk
- Want to minimize expected risk
- Idea: Minimize empirical risk instead
- This is the Empirical Risk Minimization Principle

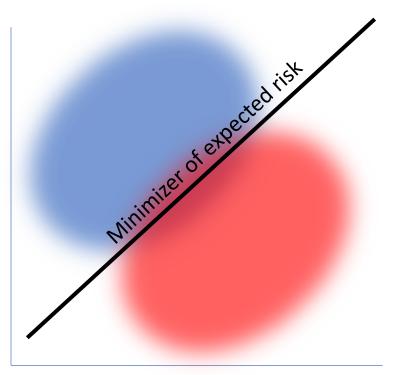
$$R(h) = \mathbb{E}_{(x,y)\sim\mathcal{D}}L(h(x),y) \qquad \hat{R}(S,h) = \frac{1}{|S|} \sum_{(x,y)\in S} L(h(x),y)$$

$$h^* = \arg\min_{h \in H} \hat{R}(S, h)$$

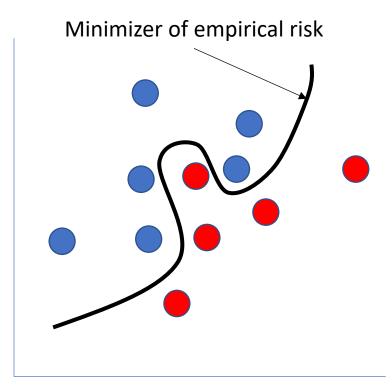
Overfitting

- For randomly chosen h, empirical risk (training error) good estimate of expected risk
- But we are choosing h by minimizing training error
- Empirical risk of chosen hypothesis *no longer* unbiased estimate:
 - We chose hypothesis based on S
 - Might have chosen h for which S is a special case
- Overfitting:
 - Minimize training error, but generalization error increases

Overfitting = fitting the noise



True distribution



Sampled training set

Generalization

$$R(h) = \mathbb{E}_{(x,y)\sim\mathcal{D}}L(h(x),y) \qquad \hat{R}(S,h) = \frac{1}{|S|} \sum_{(x,y)\in S} L(h(x),y)$$

$$R(h) = \hat{R}(S,h) + (R(h) - \hat{R}(S,h))$$

Training Generalization error

Controlling generalization error

- Variance of empirical risk inversely proportional to size of S
 - Choose very large S!
- Larger the hypothesis class H, Higher the chance of hitting bad hypotheses with low training error and high generalization error
 - Choose small H!
- For many models, can *bound* generalization error using some property of parameters
 - Regularize during optimization!
 - Eg. L2 regularization

Controlling the size of the hypothesis class

$$h(x; \mathbf{w}, b) = \sigma(\mathbf{w}^T \phi(x) + b)$$

- How many parameters (w, b) are there to find?
- ullet Depends on dimensionality of ϕ
- Large dimensionality = large number of parameters
 = more chance of overfitting
- Rule of thumb: size of training set should be at least 10x number of parameters
- Often training sets are much smaller

Regularization

Old objective

$$\min_{\mathbf{w},b} \sum_{i=1}^{N} L(h(x_i; \mathbf{w}, b), y_i)$$

New objective

$$\min_{\mathbf{w},b} \sum_{i=1}^{N} L(h(x_i; \mathbf{w}, b), y_i) + \lambda ||\mathbf{w}||^2$$

• Why does this help?

Regularization

$$\min_{\mathbf{w},b} \sum_{i=1}^{N} L(h(x_i; \mathbf{w}, b), y_i) + \lambda \|\mathbf{w}\|^2$$

- Ensures classifier does not weigh any one feature too highly
- Makes sure classifier scores vary slowly when image changes

$$|\mathbf{w}^T \phi(x_1) - \mathbf{w}^T \phi(x_2)| \le ||\mathbf{w}|| ||\phi(x_1) - \phi(x_2)||$$

Controlling generalization error

- How do we know we are overfitting?
 - Use a held-out "validation set"
 - To be an unbiased sample, must be completely unseen

Putting it all together

- Want model with least expected risk = expected loss
- But expected risk hard to evaluate
- Empirical Risk Minimization: minimize empirical risk in training set
- Might end up picking special case: overfitting
- Avoid overfitting by:
 - Constructing large training sets
 - Reducing size of model class
 - Regularization

Putting it all together

- Collect training set and validation set
- Pick hypothesis class
- Pick loss function
- Minimize empirical risk (+ regularization)
- Measure performance on held-out validation set
- Profit!

Loss functions and hypothesis classes

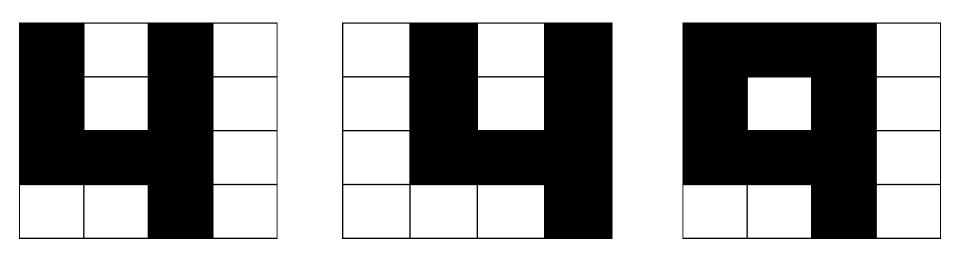
Loss function	Problem	Range of h	\mathcal{Y}	Formula
Log loss Negative log likelihood	Binary Classification Multiclass classification	$\mathbb{R} \ [0,1]^k$	$\{0,1\}$ $\{1,\ldots,k\}$	$\frac{\log(1 + e^{-yh(x)})}{-\log h_y(x)}$
Hinge loss MSE	Binary Classification Regression	\mathbb{R}	$\{0,1\}$ \mathbb{R}	$\max(0, 1 - yh(x))$ $(y - h(x))^2$

Back to images

$$h(x; \mathbf{w}, b) = \sigma(\mathbf{w}^T \phi(x) + b)$$

- What should ϕ be?
- Simplest solution: string 2D image intensity values into vector

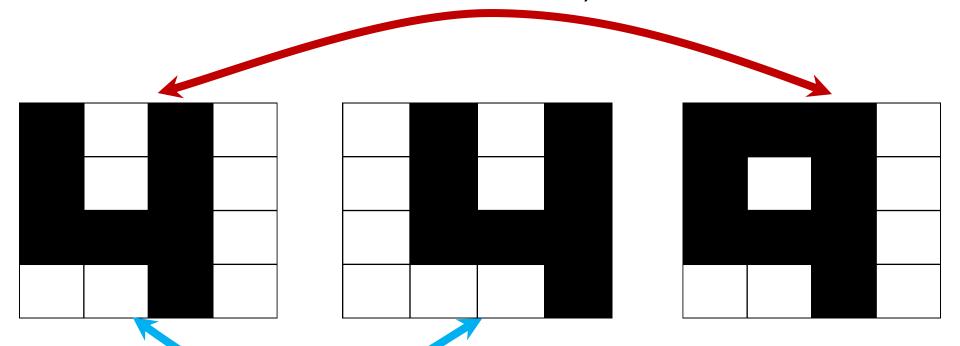
Linear classifiers on pixels are bad



- Solution 1: Better feature vectors
- Solution 2: Non-linear classifiers

Better feature vectors

These must have different feature vectors: *discriminability*



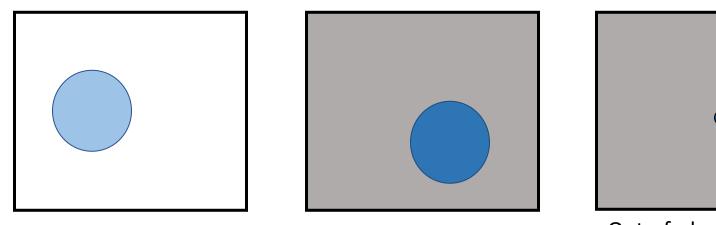
These must have similar feature vectors: *invariance*

Better feature vectors

- Invariance to
 - Illumination
 - Deformation
 - Translations/ rotations

Color and Lighting

Out-of-plane rotation

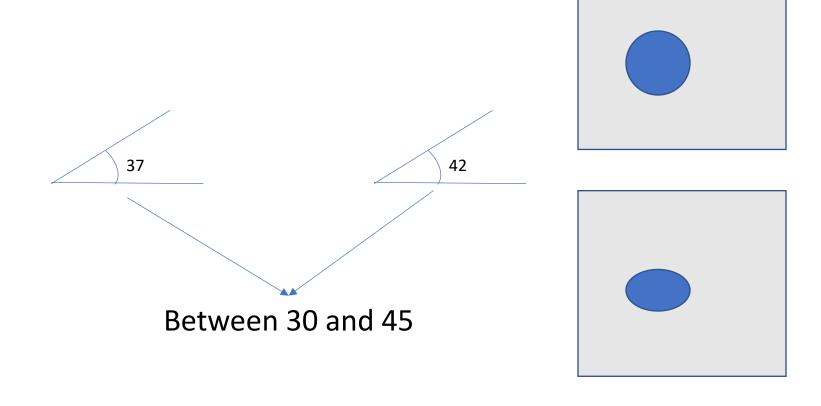


Out-of-plane rotation

SIFT

- Match pattern of edges
 - Edge orientation clue to shape
- Be resilient to *small deformations*
 - Deformations might move pixels around, but slightly
 - Deformations might change edge orientations, but slightly

Invariance to deformation by quantization ____

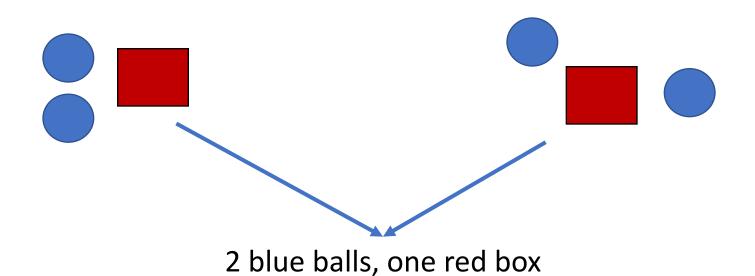


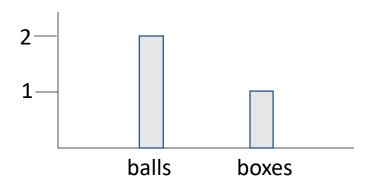
Invariance to deformation by quantization

$$g(\theta) = \begin{cases} 0 & \text{if } 0 < \theta < 2\pi/N \\ 1 & \text{if } 2\pi/N < \theta < 4\pi/N \\ 2 & \text{if } 4\pi/N < \theta < 6\pi/N \\ \dots & \dots \end{cases}$$

$$N-1 & \text{if } 2(N-1)\pi/N$$

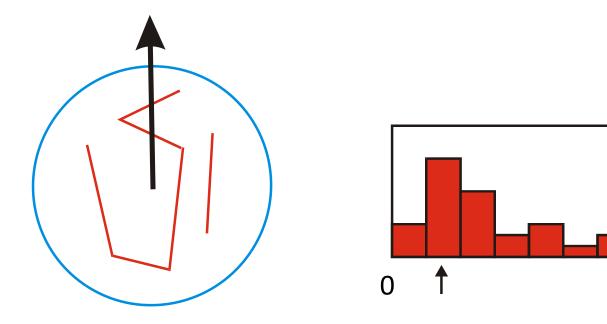
Spatial invariance by histograms





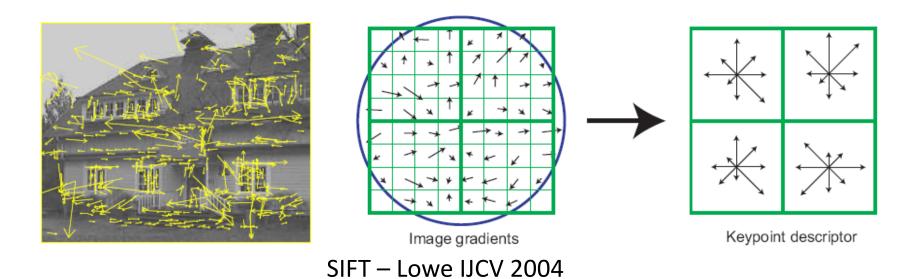
Rotation Invariance by Orientation Normalization [Lowe, SIFT, 1999]

- Compute orientation histogram
- Select dominant orientation
- Normalize: rotate to fixed orientation

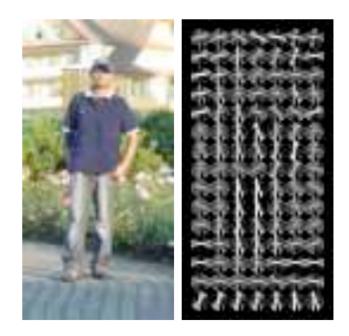


 2π

The SIFT descriptor



Same but different: HOG



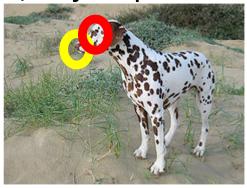
Histogram of oriented gradients
Same as SIFT but without orientation
normalization. Why?

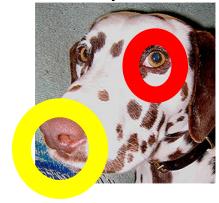
Invariance to large deformations

Invariance to large deformations

 Large deformations can cause objects / object parts to move a lot (much more than single grid cell)

Yet, object parts themselves have precise appearance





 Idea: want to represent the image as a "bag of object parts"