
Recognition II



General recipe

• Fix hypothesis class

• Define loss function

• Minimize total loss on the training set

• Why should this work?
• How do we do the minimization in practice?

h(x;w, b) = �(wT�(x) + b)

L(h(x;w, b), y) = �y log h(x;w, b) + (1� y) log(1� h(x;w, b))

min
w,b

NX

i=1

L(h(xi;w, b), yi)



Training = Optimization

• Need to minimize an objective

• More generally, objective takes the form

min
w,b

NX

i=1

L(h(xi;w, b), yi)

min
✓

NX

i=1

f(xi, yi,✓) ⌘ min
✓

F (✓)



Training = optimization

• How do we minimize this?
• Start from an initial estimate
• Iteratively reduce F. How?

min
✓

NX

i=1

f(xi, yi,✓) ⌘ min
✓

F (✓)



Optimization and function 
gradients
• Suppose current estimate is !(#)
• Consider changing this to ! # + Δ!
• How does the objective value change?
• For small Δ!, can approximate F using Taylor 

expansion 
• F is locally linear 

F (✓(t) +�✓) ⇡ F (✓(t)) +rF (✓(t))T�✓

) F (✓(t) +�✓)� F (✓(t)) ⇡ rF (✓(t))T�✓



Optimization and function 
gradients

• We want                                           to be negative
• As highly negative as possible

• So we want                           to be as negative as 
possible

• ! is step size   

F (✓(t) +�✓)� F (✓(t))

rF (✓(t))T�✓

�✓ = ��rF (✓(t))

) rF (✓(t))T�✓ = ��krF (✓(t))k2

) F (✓(t) +�✓)� F (✓(t)) ⇡ rF (✓(t))T�✓



Optimization using gradient 
descent
• Randomly initialize ! "

• For i = 1 to max_iterations:
• Compute gradient of F at ! #

• ! #$% ← ! # − (∇*(! # )
• Function value will decrease by (||∇* ! # ||.

• Repeat until ||∇* ! # ||. drops below a threshold



Gradient descent

https://yihui.name/animation/example/grad-desc/



Gradient descent - convergence

• Every step leads to a reduction in the function 
value
• If function is bounded below, we will eventually 

stop 
• But will we stop at the right “global minimum”?
• Not necessarily: local optimum!

Local min

Global 
min



Gradient descent in machine 
learning

• Computing the gradient requires a loop over all 
training examples
• Very expensive for large datasets

min
✓

NX

i=1

f(xi, yi,✓) ⌘ min
✓

F (✓)

rF (✓) =
NX

i=1

rf(xi, yi,✓)



Stochastic gradient descent

• Randomly sample small subset of examples
• Compute gradient on small subset
• Unbiased estimate of true gradient

• Take step along estimated gradient

rF (✓) =
NX

i=1

rf(xi, yi,✓)

rF (✓) ⇡
KX

j=1

rf(xij , yij ,✓)



General recipe

• Fix hypothesis class

• Define loss function

• Minimize total loss on the training set using SGD

h(x;w, b) = �(wT�(x) + b)

L(h(x;w, b), y) = �y log h(x;w, b) + (1� y) log(1� h(x;w, b))

min
w,b

NX

i=1

L(h(xi;w, b), yi)

Logistic Regression!



General recipe

• Fix hypothesis class

• Define loss function

• Minimize total loss on the training set using SGD

• Why should this work?

h(x;w, b) = �(wT�(x) + b)

L(h(x;w, b), y) = �y log h(x;w, b) + (1� y) log(1� h(x;w, b))

min
w,b

NX

i=1

L(h(xi;w, b), yi)



Why should this work?

• Let us look at the objective more carefully

• We are basically minimizing average loss on the 
training set
• Is this what we actually care about?

min
w,b

NX

i=1

L(h(xi;w, b), yi)

⌘ min
w,b

1

N

NX

i=1

L(h(xi;w, b), yi)



Risk

• Given:
• Distribution       over (x,y) pairs
• A hypothesis                 from hypothesis class H
• Loss function L

• We are interested in Expected Risk:

• Given training set S, and a particular hypothesis h, 
Empirical Risk:

D
h 2 H

R(h) = E(x,y)⇠DL(h(x), y)

R̂(S, h) =
1

|S|
X

(x,y)2S

L(h(x), y)



Risk

• Left: true quantity of interest, right: estimate
• How good is this estimate?
• If h is randomly chosen, actually a pretty good 

estimate!
• In statistics-speak, it is an unbiased estimator : correct in 

expectation 

R(h) = E(x,y)⇠DL(h(x), y)
R̂(S, h) =

1

|S|
X

(x,y)2S

L(h(x), y)

ES⇠DnR̂(S, h) = R(h)



Risk

• Empirical risk unbiased estimate of expected risk
• Want to minimize expected risk
• Idea: Minimize empirical risk instead
• This is the Empirical Risk Minimization Principle

h⇤ = arg min
h2H

R̂(S, h)

R(h) = E(x,y)⇠DL(h(x), y) R̂(S, h) =
1

|S|
X

(x,y)2S

L(h(x), y)



Overfitting

• For randomly chosen h, empirical risk (training 
error) good estimate of expected risk
• But we are choosing h by minimizing training error
• Empirical risk of chosen hypothesis no longer 

unbiased estimate:
• We chose hypothesis based on S
• Might have chosen h for which S is a special case

• Overfitting:
• Minimize training error, but generalization error 

increases



Overfitting = fitting the noise

True distribution

Minim
ize

r o
f e

xpecte
d ris

k

Minimizer of empirical risk

Sampled training set



Generalization

R(h) = R̂(S, h) + (R(h)� R̂(S, h))

Training 
error

Generalization 
error

R(h) = E(x,y)⇠DL(h(x), y) R̂(S, h) =
1

|S|
X

(x,y)2S

L(h(x), y)



Controlling generalization error

• Variance of empirical risk inversely proportional to size 
of S
• Choose very large S!

• Larger the hypothesis class H, Higher the chance of 
hitting bad hypotheses with low training error and high 
generalization error
• Choose small H!

• For many models, can bound generalization error using 
some property of parameters
• Regularize during optimization!
• Eg. L2 regularization



Controlling the size of the 
hypothesis class

• How many parameters (w, b) are there to find?
• Depends on dimensionality of !
• Large dimensionality = large number of parameters 

= more chance of overfitting
• Rule of thumb: size of training set should be at least 

10x number of parameters
• Often training sets are much smaller 

h(x;w, b) = �(wT�(x) + b)



Regularization

• Old objective

• New objective

• Why does this help?

min
w,b

NX

i=1

L(h(xi;w, b), yi)

min
w,b

NX

i=1

L(h(xi;w, b), yi) + �kwk2



Regularization

• Ensures classifier does not weigh any one feature 
too highly
• Makes sure classifier scores vary slowly when 

image changes

min
w,b

NX

i=1

L(h(xi;w, b), yi) + �kwk2

|wT�(x1)�wT�(x2)|  kwkk�(x1)� �(x2)k



Controlling generalization error

• How do we know we are overfitting?
• Use a held-out “validation set”
• To be an unbiased sample, must be completely unseen



Putting it all together

• Want model with least expected risk = expected 
loss
• But expected risk hard to evaluate
• Empirical Risk Minimization: minimize empirical risk 

in training set
• Might end up picking special case: overfitting
• Avoid overfitting by:
• Constructing large training sets
• Reducing size of model class
• Regularization



Putting it all together

• Collect training set and validation set
• Pick hypothesis class
• Pick loss function
• Minimize empirical risk (+ regularization)
• Measure performance on held-out validation set
• Profit!



Loss functions and hypothesis 
classes



Back to images

• What should ! be?
• Simplest solution: string 2D image intensity values 

into vector

h(x;w, b) = �(wT�(x) + b)



Linear classifiers on pixels are bad

• Solution 1: Better feature vectors
• Solution 2: Non-linear classifiers



Better feature vectors

These must have similar feature 
vectors: invariance

These must have different feature 
vectors: discriminability



Better feature vectors

• Invariance to 
• Illumination
• Deformation
• Translations/ rotations



Color and Lighting



Out-of-plane rotation

Out-of-plane rotation



SIFT

• Match pattern of edges
• Edge orientation – clue to shape

• Be resilient to small deformations
• Deformations might move pixels around, but slightly
• Deformations might change edge orientations, but 

slightly



Invariance to deformation by 
quantization

37 42

Between 30 and 45



Invariance to deformation by 
quantization

g(✓) =

8
>>>><

>>>>:

0 if 0 < ✓ < 2⇡/N
1 if 2⇡/N < ✓ < 4⇡/N
2 if 4⇡/N < ✓ < 6⇡/N

. . .
N � 1 if 2(N � 1)⇡/N



Spatial invariance by histograms

2 blue balls, one red box

balls boxes

2

1



T. Tuytelaars, B. Leibe

Rotation Invariance by Orientation 
Normalization
• Compute orientation histogram
• Select dominant orientation
• Normalize: rotate to fixed orientation 

0 2p

[Lowe, SIFT, 1999]



The SIFT descriptor

SIFT – Lowe IJCV 2004



Same but different: HOG

Histogram of oriented gradients
Same as SIFT but without orientation

normalization. Why?



Invariance to large deformations



Invariance to large deformations

• Large deformations can cause objects / object parts to 
move a lot (much more than single grid cell)
• Yet, object parts themselves have precise appearance

• Idea: want to represent the image as a “bag of object 
parts”


