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Multiple pixels: matrix form
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• What we�ve seen so far: [Woodham 1980]

• Next up: Unknown light directions [Hayakawa 1994]

Unknown Lighting
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4

Diffuse 
albedo

Light 
intensity

Surface normals Light directions



Unknown Lighting
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Surface normals, scaled 
by albedo

Light directions, scaled 
by intensity



Unknown Lighting
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Unknown Lighting

7

=
*

I LT

G

Measurements 
(one image per row)

Light directions
(scaled by intensity)

Surface normals
(scaled by albedo)

Both L and G are now unknown!
This is a matrix factorization problem.
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There�s hope: We know that I is rank 3

(n x 3)

(3 x p)

(n x p)

Unknown Lighting
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Use the SVD to decompose I:

SVD gives the best rank-3 approximation of a matrix. 

Unknown Lighting
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Use the SVD to decompose I:

SVD gives the best rank-3 approximation of a matrix. 

Unknown Lighting

What do we do with Σ?
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Use the SVD to decompose I:

Can we just do that?

Unknown Lighting
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Use the SVD to decompose I:

Can we just do that? …almost.

The decomposition is unique up to an invertible 3x3 A. 

Unknown Lighting
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Use the SVD to decompose I:

Can we just do that? …almost.

The decomposition is unique up to an invertible 3x3 A. 

Unknown Lighting
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Use the SVD to decompose I:

Unknown Lighting

! = # Σ%, ' = %() Σ*
You can find A if you know 
• 6 points with the same reflectance, or
• 6 lights with the same intensity.



Unknown Lighting: Ambiguities
• Multiple combinations of 

lighting and geometry can 
produce the same sets of 
images.
• Add assumptions or prior 

knowledge about geometry or 
lighting, etc. to limit the 
ambiguity.



Recognition



Image classification

• Given an image, produce a label
• Label can be:
• 0/1 or yes/no: Binary classification
• one-of-k: Multiclass classification
• 0/1 for each of k concepts: Multilabel classification



Image classification - Binary 
classification

Is this a dog? 
Yes



Image classification - Multiclass 
classification

Which of these is it: 
dog, cat or zebra? 
Dog



Image classification - Multilabel
classification

Is this a dog? Yes
Is this furry? Yes
Is this sitting down? Yes



A history of classification : MNIST

• 2D
• 10 classes
• 6000 examples per class

1990’s



A history of classification : Caltech 
101

• 101 classes
• 10 classes
• 30 examples per class
• Strong category-

specific biases
• Clean images

1990’s

MNIST

2004



A history of classification: PASCAL 
VOC

• 20 classes
• ~500 examples per 

class
• Clutter, occlusion, 

natural scenes

1990’s

MNIST

2004

Caltech 101

2007-2012



A history of classification: 
ImageNet

• 1000 classes
• ~1000 examples per 

class
• Mix of cluttered and 

clean images

1990’s

MNIST

2004

Caltech 101

2007-2013

PASCAL VOC

2013-2017



Why is recognition hard?

Pose variation



Why is recognition hard?

Lighting variation



Why is recognition hard?

Scale variation



Why is recognition hard?

Clutter and occlusion



Why is recognition hard?

Intrinsic intra-class variation



Why is recognition hard?

Inter-class similarity



The language of recognition

• Boundaries of classes are often fuzzy
• “A dog is an animal with four legs, a tail and a 

snout”
• Really?



The language of recognition

• “… Practically anything can happen in an image and 
furthermore practically everything did” - Marr
• Much better to talk in terms of probabilities

• Joint distribution of images and labels : P(x,y)
• Conditional distribution of labels given image : 

P(y|x)

X :Images

Y :Labels

D :Distribution over X ⇥ Y



Learning

• We are interested in the conditional distribution
• Key idea: teach computer visual concepts by 

providing examples
X :Images

Y :Labels

D :Distribution over X ⇥ Y

P (y|x)

S = {(xi, yi) ⇠ D, i = 1, . . . , n}Training 
Set



Example

• Binary classifier “Dog” or ”not Dog”
• Labels: {0, 1}
• Training set

, 1), , 1), , 0) , … }{( ( (



Choosing a model class

• Will try and find P(y = 1 | x)
• P(y=0 | x) = 1 - P(y=1 | x)
• Need to find
• But: enormous number of possible mappings

h : X ! [0, 1]



Choosing a model class

• Assume h is a linear classifier in feature space
• Feature space?
• Linear classifier?

h : X ! [0, 1]



Feature space: representing 
images as vectors

• Represent an image as a vector in 
• Simple way: step 1: convert image to gray-scale and 

resize to fixed size

Rd



Feature space: representing 
images as vectors

• Step 2: Flatten 2D array into 1D vector



Feature space: representing 
images as vectors

• Can represent this as a function that takes an image 
and converts into a vector

� ( )    =



Linear classifiers

• Given an image, can use ! to get a vector and plot 
it as a point in high dimensional space



Linear classifiers

• A linear classifier 
corresponds to a 
hyperplane
• Equivalent of a line in 

high-dimensional space
• Equation: !"# + % = 0

• Points on the same side 
are the same class



Linear classifiers

• p(y = 1 | x) is high on the 
red side and low on the 
blue side
• A common way of 

defining p:
! " = 1 %)
= ' ()% + +
= 1
1 + ,-(/0123)

sigmoid function



Linear classifiers in feature space

�(s) =
1

1 + e�s

h(x;w, b) = �(wT�(x) + b)



Linear classifiers in feature space

• Family of functions depending on w and b
• Each function is called a hypothesis
• Family is called a hypothesis class
• Hypotheses indexed by w and b
• Need to find the best hypothesis = need to find 

best w and b
• w and b are called parameters

h(x;w, b) = �(wT�(x) + b)



Training: Choosing the best 
hypothesis
• Use training set to find best-fitting hypothesis

! = { $%, '% : ) = 1,… , ,}

• Question: how do we define fit?



Training: Choosing the best 
hypothesis
• Use training set to find best-fitting hypothesis
• Question: how do we define fit?
• Given (x,y), and candidate hypothesis ℎ(⋅;%, ')
• ℎ();%, ') is estimated probability label is 1
• Idea: compute estimated probability for true label y
• Want this probability to be high
• Likelihood

li(h(x;w, b), y) =

⇢
h(x;w, b) if y = 1
1� h(x;w, b) ow



An alternate expression for the 
hypothesis

li(h(x;w, b), y) =

⇢
h(x;w, b) if y = 1
1� h(x;w, b) ow



An alternate expression for the 
hypothesis

li(h(x;w, b), y) =

⇢
h(x;w, b) if y = 1
1� h(x;w, b) ow

li(h(x;w, b), y) = h(x;w, b)y(1� h(x;w, b))(1�y)



Training: Choosing the best 
hypothesis

• Likelihood of a single data point
• Fit = total likelihood of entire training dataset

li(hw(x), y) = hw(x)y(1� hw(x))1�y

S = {(xi, yi) ⇠ D, i = 1, . . . , n}
nY

i=1

h(xi;w, b)yi(1� h(xi;w, b))(1�yi)



Training: Choosing the best 
hypothesis

• Use log likelihood

• Pick the hypothesis that maximizes log likelihood
• Each hypothesis corresponds to a setting of w and b
• Maximization problem

nY

i=1

h(xi;w, b)yi(1� h(xi;w, b))(1�yi)

lli(w, b) =
nX

i=1

yi log h(xi;w, b) + (1� yi) log(1� h(xi;w, b))

max
w,b

nX

i=1

yi log h(xi;w, b) + (1� yi) log(1� h(xi;w, b))



Training: Choosing the best 
hypothesis
• Maximizing log likelihood = Minimizing negative log 

likelihood

max
w,b

nX

i=1

yi log h(xi;w, b) + (1� yi) log(1� h(xi;w, b))

⌘ min
w,b

�(
nX

i=1

yi log h(xi;w, b) + (1� yi) log(1� h(xi;w, b)))



Training: Choosing the best 
hypothesis
• Negative log likelihood is a loss function

• Training = minimizing total loss on a training set

L(h(x;w, b), y) = �y log h(x;w, b) + (1� y) log(1� h(x;w, b))

min
w,b

NX

i=1

L(h(xi;w, b), yi)



General recipe

• Fix hypothesis class

• Define loss function

• Minimize total loss on the training set

• Why should this work?
• How do we do the minimization in practice

L(hw(x), y) = (�y log hw(x) + (1� y) log(1� hw(x)))

min
w

nX

i=1

L(hw(xi), yi)

hw(x) = �(wT�(x))


