Photometric stereo

Radiance

- Pixels measure radiance

Where do the rays come from?

- Rays from the
light source
"reflect" off a
surface and reach camera
- Reflection:

Surface absorbs light energy and radiates it back

Light rays interacting with a surface

- Light of radiance L_{i} comes from light source at an incoming direction θ_{i}
- It sends out a ray of radiance L_{r} in the outgoing direction θ_{r}
- How does L_{r} relate to L_{i} ?

- \mathbf{N} is surface normal
- \mathbf{L} is direction of light, making θ_{i} with normal
- \mathbf{V} is viewing direction, making θ_{r} with normal

Light rays interacting with a surface

- \mathbf{N} is surface normal
- \mathbf{L} is direction of light, making θ_{i} with normal
- \mathbf{V} is viewing direction, making θ_{r} with normal

Output radiance along V

Light rays interacting with a surface

$$
L_{r}=\rho\left(\theta_{i}, \theta_{r}\right) L_{i} \cos \theta_{i}
$$

- Special case 1: Perfect mirror
- $\rho\left(\theta_{i}, \theta_{r}\right)=0$ unless $\theta_{i}=\theta_{r}$
- Special case 2: Matte surface
- $\rho\left(\theta_{i}, \theta_{r}\right)=\rho_{0}$ (constant)

Special case 1: Perfect mirror

- $\rho\left(\theta_{i}, \theta_{r}\right)=0$ unless $\theta_{i}=\theta_{r}$
- Also called "Specular surfaces"
- Reflects light in a single, particular direction

Special case 2: Matte surface

- $\rho\left(\theta_{i}, \theta_{r}\right)=\rho_{0}$
- Also called "Lambertian surfaces"
- Reflected light is independent of viewing direction

Lambertian surfaces

- For a lambertian surface:

$$
\begin{aligned}
& L_{r}=\rho L_{i} \cos \theta_{i} \\
& \Rightarrow L_{r}=\rho L_{i} \mathbf{L} \cdot \mathbf{N}
\end{aligned}
$$

- ρ is called albedo

- Think of this as paint
- High albedo: white colored surface
- Low albedo: black surface
- Varies from point to point

Lambertian surfaces

- Assume the light is directional: all rays from light source are parallel
- Equivalent to a light source infinitely far away
- All pixels get light from the same direction L and of the same intensity L_{i}

Lambertian surfaces

Reconstructing Lambertian

 surfaces$$
I(x, y)=\rho(x, y) L_{i} \mathbf{L} \cdot \mathbf{N}(x, y)
$$

- Equation is a constraint on albedo and normals
- Can we solve for albedo and normals?

Solution 1: Recovery from a single image

- Step 1: Intrinsic image decomposition
- Reflectance image $\rho(x, y)$
- Shading image $L_{i} \mathbf{L} \cdot \mathbf{N}(x, y)$
- Decomposition relies on priors or reflectance image
- What kind of priors?
- Reflectance image captures the "paint" on an object surface
- Surfaces tend to be of uniform color with sharp edges when color changes

Solution 1: Recovery from a single image

- Step 2: Decompose shading image into illumination and normals

$$
L_{i} \mathbf{L} \cdot \mathbf{N}(x, y)
$$

- Called Shape-From-Shading
- Relies on priors on shape: shapes are smooth

Solution 2: Recovery from multiple images

$$
I(x, y)=\rho(x, y) L_{i} \mathbf{L} \cdot \mathbf{N}(x, y)
$$

- Represents an equation in the albedo and normals
- Multiple images give constraints on albedo and normals
- Called Photometric Stereo

Multiple Images: Photometric Stereo

Photometric stereo - the math

$$
I(x, y)=\rho(x, y) L_{i} \mathbf{L} \cdot \mathbf{N}(x, y)
$$

- Consider single pixel
- Assume $L_{i}=1$

$$
\begin{aligned}
& I=\rho \mathbf{L} \cdot \mathbf{N} \\
& I=\rho \mathbf{N}^{T} \mathbf{L}
\end{aligned}
$$

- Write $\mathbf{G}=\rho \mathbf{N}$
- G is a 3 -vector
- Norm of $\mathbf{G}=\rho$
- Direction of $\mathbf{G}=\mathbf{N}$

Photometric stereo - the math

- Consider single pixel
- Assume $L_{i}=1$

$$
I=\rho \mathbf{N}^{T} \mathbf{L}
$$

- Write $\mathbf{G}=\rho \mathbf{N}$
- G is a 3-vector
- Norm of G = ρ
- Direction of $\mathbf{G}=\mathbf{N}$

$$
I=\mathbf{G}^{T} \mathbf{L}=\mathbf{L}^{T} \mathbf{G}
$$

Photometric stereo - the math

$$
I=\mathbf{L}^{T} \mathbf{G}
$$

- Multiple images with different light sources but same viewing direction?

$$
\begin{aligned}
I_{1} & =\mathbf{L}_{1}^{T} \mathbf{G} \\
I_{2} & =\mathbf{L}_{2}^{T} \mathbf{G} \\
\vdots & \\
I_{k} & =\mathbf{L}_{k}^{T} \mathbf{G}
\end{aligned}
$$

Photometric stereo - the math

$$
\begin{aligned}
I_{1} & =\mathbf{L}_{1}^{T} \mathbf{G} \\
I_{2} & =\mathbf{L}_{2}^{T} \mathbf{G}
\end{aligned}
$$

$$
I_{k}=\mathbf{L}_{k}^{T} \mathbf{G}
$$

- Assume lighting directions are known
- Each is a linear equation in G
- Stack everything up into a massive linear system of equations!

Photometric stereo - the math

$$
\begin{aligned}
I_{1} & =\mathbf{L}_{1}^{T} \mathbf{G} \\
I_{2} & =\mathbf{L}_{2}^{T} \mathbf{G} \\
\vdots & \\
I_{k} & =\mathbf{L}_{k}^{T} \mathbf{G}
\end{aligned}
$$

Photometric stereo - the math

$$
\begin{aligned}
\underset{k \times 1}{\mathbf{I}} & =\underset{\mathrm{k} \times 3}{\mathbf{L}^{T}} \mathbf{G} \mathbf{B}_{1} \\
\mathbf{G} & =\mathbf{L}^{-T} \mathbf{I}
\end{aligned}
$$

- What is the minimum value of k to allow recovery of G?
- How do we recover G if the problem is overconstrained?

Photometric stereo - the math

- How do we recover G if the problem is overconstrained?
- More than 3 lights: more than 3 images
- Least squares

$$
\min _{\mathbf{G}}\left\|\mathbf{I}-\mathbf{L}^{T} \mathbf{G}\right\|^{2}
$$

- Solved using normal equations

$$
\mathbf{G}=\left(\mathbf{L L}^{T}\right)^{-1} \mathbf{L I}
$$

Normal equations

$$
\left\|\mathbf{I}-\mathbf{L}^{T} \mathbf{G}\right\|^{2}=\mathbf{I}^{T} \mathbf{I}+\mathbf{G}^{T} \mathbf{L} \mathbf{L}^{T} \mathbf{G}-2 \mathbf{G}^{T} \mathbf{L I}
$$

- Take derivative with respect to \mathbf{G} and set to 0

$$
\begin{array}{r}
2 \mathbf{L L}^{T} \mathbf{G}-2 \mathbf{L I}=0 \\
\Rightarrow \mathbf{G}=\left(\mathbf{L L}^{T}\right)^{-1} \mathbf{L I}
\end{array}
$$

Estimating normals and albedo from G

- Recall that $\mathbf{G}=\rho \mathbf{N}$

$$
\begin{aligned}
& \|\mathbf{G}\|=\rho \\
& \frac{\mathbf{G}}{\|\mathbf{G}\|}=\mathbf{N}
\end{aligned}
$$

Multiple pixels

- We've looked at a single pixel till now
- How do we handle multiple pixels?
- Essentially independent equations!

Multiple pixels: matrix form

- Note that all pixels share the same set of lights

$$
\begin{aligned}
\mathbf{I}^{(1)} & =\mathbf{L}^{T} \mathbf{G}^{(1)} \\
\mathbf{I}^{(2)} & =\mathbf{L}^{T} \mathbf{G}^{(2)} \\
& \vdots \\
\mathbf{I}^{(n)} & =\mathbf{L}^{T} \mathbf{G}^{(n)}
\end{aligned}
$$

Multiple pixels: matrix form

- Can stack these into columns of a matrix

$$
\begin{aligned}
& \mathbf{I}^{(1)}=\mathbf{L}^{T} \mathbf{G}^{(1)} \\
& \mathbf{I}^{(2)}=\mathbf{L}^{T} \mathbf{G}^{(2)}
\end{aligned}
$$

$$
\mathbf{I}^{(n)}=\mathbf{L}^{T} \mathbf{G}^{(n)}
$$

$\left[\begin{array}{llll}\mathbf{I}^{(1)} & \mathbf{I}^{(2)} & \cdots & \mathbf{I}^{(n)}\end{array}\right]=\mathbf{L}^{T}\left[\begin{array}{llll}\mathbf{G}^{(1)} & \mathbf{G}^{(2)} & \cdots & \mathbf{G}^{(n)}\end{array}\right]$

$$
\mathbf{I}=\mathbf{L}^{T} \mathbf{G}
$$

Multiple pixels: matrix form

$$
\mathbf{I}=\mathbf{L}^{T} \mathbf{G}
$$

Estimating depth from normals

- So we got surface normals, can we get depth?
- Yes, given boundary conditions
- Normals provide information about the derivative

Brief detour: Orthographic projection

- Perspective projection
- $x=\frac{X}{Z}, y=\frac{Y}{Z}$
- If all points have similar depth
- $Z \approx Z_{0}$
- $x \approx \frac{X}{Z_{0}}, y \approx \frac{Y}{Z_{0}}$
- $x \approx c X, y \approx c Y$
- A scaled version of orthographic projection
- $x=X, y=Y$

Perspective

Scaled orthographic

Depth Map from Normal Map

- We now have a surface normal, but how do we get depth?

Assume a smooth surface

$$
\begin{aligned}
V_{1} & =\left(c(x+1), c y, Z_{x+1, y}\right)-\left(c x, c y, Z_{x, y}\right) \\
& =\left(c, 0, Z_{x+1, y}-Z_{x, y}\right) \\
0 & =N \cdot V_{1} \\
& =\left(n_{x}, n_{y}, n_{z}\right) \cdot\left(c, 0, Z_{x+1, y}-Z_{x, y}\right) \\
& =c n_{x}+n_{z}\left(Z_{x+1, y}-Z_{x, y}\right)
\end{aligned}
$$

Get a similar equation for $\mathbf{V}_{\mathbf{2}}$

- Each normal gives us two linear constraints on z
- compute z values by solving a matrix equation

Determining Light Directions

- Trick: Place a mirror ball in the scene.

- The location of the highlight is determined by the light source direction.

Determining Light Directions

- For a perfect mirror, the light is reflected across N :

$$
I_{e}=\left\{\begin{array}{cl}
I_{i} & \text { if } \mathbf{V}=\mathbf{R} \\
0 & \text { otherwise }
\end{array}\right.
$$

Determining Light Directions

$$
\begin{aligned}
\longrightarrow & =(N \cdot R) N \\
\cdots-\cdots- & =R-(N \cdot R) N \\
\longrightarrow-- & =R-(N \cdot R) N \\
\longrightarrow & =\xrightarrow{-2}---- \\
& =R-2(R-N \cdot R) N \\
& =2(N \cdot R) N-R
\end{aligned}
$$

So the light source direction is given by:

$$
L=2(N \cdot R) N-R
$$

Determining Light Directions

- Assume orthographic projection
- Viewing direction $\mathrm{R}=[0,0,-1]$
- Normal?
Z_{h} and Z_{c} are unknown, but:

$$
\begin{aligned}
& \left(x_{h}-x_{c}\right)^{2}+\left(y_{h}-y_{c}\right)^{2} \\
& +\left(Z_{h}-Z_{c}\right)^{2}=r^{2}
\end{aligned}
$$

($Z_{h}-Z_{c}$) can be computed
$\left(x_{h}-x_{c}, y_{h}-y_{c}, Z_{h}-Z_{c}\right)$ is
the normal

$$
L=2(N \cdot R) N-R
$$

Photometric Stereo

What results can you get?

Input
(1 of 12)

Normals (RGB
colormap)

Shaded 3D rendering

Textured 3D rendering

Results

from Athos Georghiades

Results

Input
(1 of 12)
Normals (RGB
colormap)

Shaded 3D rendering

Textured 3D rendering

Questions?

