Epipolar geometry contd.

Estimating F-8-point algorithm

- The fundamental matrix F is defined by

$$
\mathbf{x}^{\prime \mathrm{T}} \mathbf{F} \mathbf{x}=0
$$

for any pair of matches x and x^{\prime} in two images.

- Let $x=(u, v, 1)^{\top}$ and $x^{\prime}=\left(u^{\prime}, v^{\prime}, 1\right)^{\top}$,

$$
\mathbf{F}=\left[\begin{array}{lll}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{array}\right]
$$

each match gives a linear equation

$$
u u^{\prime} f_{11}+v u^{\prime} f_{12}+u^{\prime} f_{13}+u v^{\prime} f_{21}+v v^{\prime} f_{22}+v^{\prime} f_{23}+u f_{31}+v f_{32}+f_{33}=0
$$

8-point algorithm

- In reality, instead of solvingAf $=0$, we seek \mathbf{f} to minimize $\|\mathbf{A f}\|$, least eigenvector of $\mathbf{A}^{\mathrm{T}} \mathbf{A}$.

8-point algorithm - Problem?

- F should have rank 2
- To enforce that \mathbf{F} is of rank $2, \mathrm{~F}$ is replaced by F^{\prime} that minimizes $\left\|\mathbf{F}-\mathbf{F}^{\prime}\right\|$ subject to the rank constraint.
- This is achieved by SVD. Let $\mathbf{F}=\mathbf{U} \Sigma \mathbf{V}$, ${ }^{\mathrm{T}}$ where

$$
\Sigma=\left[\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & \sigma_{3}
\end{array}\right] \text {, let } \Sigma^{\prime}=\left[\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

then $\mathbf{F}^{\prime}=\mathbf{U} \Sigma^{\prime} \mathbf{V}^{\mathrm{T}}$ is the solution.

Recovering camera parameters

 from F / E- Can we recover R and t between the cameras from F?

$$
F=K_{2}^{-T}[\mathbf{t}]_{\times} R K_{1}^{-1}
$$

- No: K_{1} and K_{2} are in principle arbitrary matrices
- What if we knew K_{1} and K_{2} to be identity?

$$
E=[\mathbf{t}]_{\times} R
$$

Recovering camera parameters from E
$E=[\mathbf{t}]_{\times} R$
$\mathbf{t}^{T} E=\mathbf{t}^{T}[\mathbf{t}]_{\times} R=0$
$E^{T} \mathbf{t}=0$

- \mathbf{t} is a solution to $\mathrm{E}^{\top} \mathbf{x}=0$
- Can't distinguish between \mathbf{t} and ct for constant scalar c
- How do we recover R?

Recovering camera parameters from E
$E=[\mathbf{t}]_{\times} R$

- We know E and t
- Consider taking SVD of E and $[\mathrm{t}]_{\mathrm{X}}$

$$
\begin{gathered}
{[\mathbf{t}]_{\times}=U \Sigma V^{T}} \\
E=U^{\prime} \Sigma^{\prime} V^{\prime T} \\
U^{\prime} \Sigma^{\prime} V^{\prime T}=E=[\mathbf{t}]_{\times} R=U \Sigma V^{T} R \\
U^{\prime} \Sigma^{\prime} V^{\prime T}=U \Sigma V^{T} R \\
V^{\prime T}=V^{T} R
\end{gathered}
$$

Recovering camera parameters from E
$E=[\mathbf{t}]_{\times} R$
$\mathbf{t}^{T} E=\mathbf{t}^{T}[\mathbf{t}]_{\times} R=0$
$E^{T} \mathbf{t}=0$

- \mathbf{t} is a solution to $\mathrm{E}^{\top} \mathbf{x}=0$
- Can't distinguish between \mathbf{t} and ct for constant scalar c

8-point algorithm

- Pros: it is linear, easy to implement and fast
- Cons: susceptible to noise
- Degenerate: if points are on same plane
- Normalized 8-point algorithm: Hartley
- Position origin at centroid of image points
- Rescale coordinates so that center to farthest point is sqrt (2)

Other approaches to obtaining 3D structure

Active stereo with structured light

- Project "structured" light patterns onto the object
- simplifies the correspondence problem
- Allows us to use only one camera

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming. 3DPVT 2002

Active stereo with structured light

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming. 3DPVT 2002

Microsoft Kinect

Light and geometry

Till now: 3D structure from multiple cameras

- Problems:
- requires calibrated cameras
- requires correspondence
- Other cues to 3D structure?

What does 3D structure mean?

- We have been talking about the depth of a pixel

What does 3D structure mean?

- But we can also look at the orientation of the surface at each pixel: surface normal

Shading is a cue to surface orientation

Modeling Image Formation

Now we need to reason about:

- How light interacts with the scene
- How a pixel value is related to light energy in the world

Track a "ray" of light all the way from light source to the sensor

How does light interact with the scene?

- Light is a bunch of photons
- Photons are energy packets
- Light starts from the light source, is reflected / absorbed by surfaces and lands on the camera
- Two key quantities:
- Irradiance
- Radiance

Radiance

- How do we measure the "strength" of a beam of light?
- Idea: put a sensor and see how much energy it gets

Radiance

- How do we measure the "strength" of a beam of light?
- Radiance: power in a particular direction per unit area when surface is orthogonal to direction

Radiance

- Pixels measure radiance

Where do the rays come from?

- Rays from the light source "reflect" off a surface and reach camera
- Reflection: Surface absorbs light energy and radiates it back

Irradiance

- Radiance measures the energy of a light beam
- But what is the energy received by a surface?
- Depends on the area of the surface and the orientation

$A \cos \theta$

Irradiance

- Power received by a surface patch
- of area A
- from a beam of radiance L
- coming at angle $\theta=\mathrm{LA} \cos \theta$

Irradiance

- Power received by a surface patch of unit area
- from a beam of radiance L
- coming at angle $\theta=\mathrm{L} \cos \theta$
- Called Irradiance
- Irradiance = Radiance of ray* $\cos \theta$

Light rays interacting with a surface

- Light of radiance L_{i} comes from light source at an incoming direction θ_{i}
- It sends out a ray of radiance L_{r} in the outgoing direction θ_{r}
- How does L_{r} relate to L_{i} ?

- \mathbf{N} is surface normal
- \mathbf{L} is direction of light, making θ_{i} with normal
- \mathbf{V} is viewing direction, making θ_{r} with normal

Light rays interacting with a surface

- \mathbf{N} is surface normal
- \mathbf{L} is direction of light, making θ_{i} with normal
- \mathbf{V} is viewing direction, making θ_{r} with normal

Output radiance along V

Light rays interacting with a surface

$$
L_{r}=\rho\left(\theta_{i}, \theta_{r}\right) L_{i} \cos \theta_{i}
$$

- Special case 1: Perfect mirror
- $\rho\left(\theta_{i}, \theta_{r}\right)=0$ unless $\theta_{i}=\theta_{r}$
- Special case 2: Matte surface
- $\rho\left(\theta_{i}, \theta_{r}\right)=\rho_{0}$ (constant)

Special case 1: Perfect mirror

- $\rho\left(\theta_{i}, \theta_{r}\right)=0$ unless $\theta_{i}=\theta_{r}$
- Also called "Specular surfaces"
- Reflects light in a single, particular direction

Special case 2: Matte surface

- $\rho\left(\theta_{i}, \theta_{r}\right)=\rho_{0}$
- Also called "Lambertian surfaces"
- Reflected light is independent of viewing direction

Lambertian surfaces

- For a lambertian surface:

$$
\begin{aligned}
& L_{r}=\rho L_{i} \cos \theta_{i} \\
& \Rightarrow L_{r}=\rho L_{i} \mathbf{L} \cdot \mathbf{N}
\end{aligned}
$$

- ρ is called albedo

- Think of this as paint
- High albedo: white colored surface
- Low albedo: black surface
- Varies from point to point

Lambertian surfaces

- Assume the light is directional: all rays from light source are parallel
- Equivalent to a light source infinitely far away
- All pixels get light from the same direction L and of the same intensity L_{i}

Lambertian surfaces

Lambertian surfaces

Lambertian surfaces

Far

Reconstructing Lambertian

 surfaces$$
I(x, y)=\rho(x, y) L_{i} \mathbf{L} \cdot \mathbf{N}(x, y)
$$

- Equation is a constraint on albedo and normals
- Can we solve for albedo and normals?

Solution 1: Shape from Shading

$$
I(x, y)=\rho(x, y) L_{i} \mathbf{L} \cdot \mathbf{N}(x, y)
$$

- Assume L_{i} is 1
- Assume Lis known
- Assume some normals known
- Assume surface smooth: normals change slowly

In practice, SFS doesn' t work very well: assumptions are too restrictive, too much ambiguity in nontrivial scenes.

