Epipolar geometry continued

Epipolar lines

Epipolar lines

Epipolar lines

- The epipolar line \mathbf{l}' is the image of the ray through \mathbf{x}
- The epipole e is the point of intersection of the line joining the camera centres with the image plane
 - this line is the baseline for a stereo rig, and
 - the translation vector for a moving camera
- The epipole is the image of the centre of the other camera: e = PC', e' = P'C

- Assume intrinsic parameters K are identity
- Assume world coordinate system is centered at 1st camera pinhole with Z along viewing direction

$$\vec{\mathbf{x}}_{img}^{(1)} \equiv K_1 \begin{bmatrix} R_1 & \mathbf{t}_1 \end{bmatrix} \vec{\mathbf{x}}_w$$
$$\vec{\mathbf{x}}_{img}^{(2)} \equiv K_2 \begin{bmatrix} R_2 & \mathbf{t}_2 \end{bmatrix} \vec{\mathbf{x}}_w$$

- Assume intrinsic parameters K are identity
- Assume world coordinate system is centered at 1st camera pinhole with Z along viewing direction

$$\vec{\mathbf{x}}_{img}^{(1)} \equiv \begin{bmatrix} I & 0 \end{bmatrix} \vec{\mathbf{x}}_w$$
$$\vec{\mathbf{x}}_{img}^{(2)} \equiv \begin{bmatrix} R & \mathbf{t} \end{bmatrix} \vec{\mathbf{x}}_w$$

- Assume intrinsic parameters K are identity
- Assume world coordinate system is centered at 1st camera pinhole with Z along viewing direction

$$\vec{\mathbf{x}}_{img}^{(1)} \equiv \begin{bmatrix} I & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x}_w \\ 1 \end{bmatrix} = \mathbf{x}_w$$
$$\vec{\mathbf{x}}_{img}^{(2)} \equiv \begin{bmatrix} R & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{x}_w \\ 1 \end{bmatrix} = R\mathbf{x}_w + \mathbf{t}$$

- Assume intrinsic parameters K are identity
- Assume world coordinate system is centered at 1st camera pinhole with Z along viewing direction

$$ec{\mathbf{x}}_{img}^{(1)} \equiv \mathbf{x}_w$$

 $ec{\mathbf{x}}_{img}^{(2)} \equiv R\mathbf{x}_w + \mathbf{t}$

- Assume intrinsic parameters K are identity
- Assume world coordinate system is centered at 1st camera pinhole with Z along viewing direction

$$\lambda_1 \vec{\mathbf{x}}_{img}^{(1)} = \mathbf{x}_w$$

$$\lambda_2 \vec{\mathbf{x}}_{img}^{(2)} = R \mathbf{x}_w + \mathbf{t}$$

Epipolar geometry - the math $\vec{\mathbf{x}}_{imq}^{(2)} \cdot \mathbf{t} \times R\vec{\mathbf{x}}_{imq}^{(1)} = 0$

- Can we write this as matrix vector operations?
- Cross product can be written as a matrix

$$[\mathbf{t}]_{ imes} = \begin{bmatrix} 0 & -t_z & t_y \ t_z & 0 & -t_x \ -t_y & t_x & 0 \end{bmatrix}$$
 $[\mathbf{t}]_{ imes} \mathbf{a} = \mathbf{t} imes \mathbf{a}$

Epipolar geometry - the math $\vec{\mathbf{x}}_{img}^{(2)} \cdot [\mathbf{t}]_{\times} R \vec{\mathbf{x}}_{img}^{(1)} = 0$

- Can we write this as matrix vector operations?
- Dot product can be written as a vector-vector times

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^T \mathbf{b}$$

Epipolar geometry - the math $\vec{\mathbf{x}}_{img}^{(2)} \cdot [\mathbf{t}]_{\times} R \vec{\mathbf{x}}_{img}^{(1)} = 0$

- Can we write this as matrix vector operations?
- Dot product can be written as a vector-vector times

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^T \mathbf{b}$$

 $\vec{\mathbf{x}}_{img}^{(2)T}[\mathbf{t}]_{\times}R\vec{\mathbf{x}}_{img}^{(1)} = 0$ $\vec{\mathbf{x}}_{img}^{(2)T} E \vec{\mathbf{x}}_{img}^{(1)} = 0$

Epipolar constraint and epipolar lines

$$\vec{\mathbf{x}}_{img}^{(2)T} E \vec{\mathbf{x}}_{img}^{(1)} = 0$$

- Consider a known, fixed pixel in the first image
- What constraint does this place on the corresponding pixel?

•
$$\vec{\mathbf{x}}_{img}^{(2)T}\mathbf{l} = 0$$
 where $\mathbf{l} = E\vec{\mathbf{x}}_{img}^{(1)}$

• What kind of equation is this?

Epipolar constraint and epipolar lines

$$\vec{\mathbf{x}}_{img}^{(2)T} E \vec{\mathbf{x}}_{img}^{(1)} = 0$$

- Consider a known, fixed pixel in the first image
- $\vec{\mathbf{x}}_{img}^{(2)T} \mathbf{l} = 0$ where $\mathbf{l} = E\vec{\mathbf{x}}_{img}^{(1)}$ $\vec{\mathbf{x}}_{img}^{(2)T} \mathbf{l} = 0$ $\Rightarrow \begin{bmatrix} x_2 & y_2 & 1 \end{bmatrix} \begin{bmatrix} l_x \\ l_y \\ l_z \end{bmatrix} = 0$ $\Rightarrow l_x x_2 + l_y y_2 + l_z = 0$

Epipolar constraint: putting it all together

- If **p** is a pixel in first image and **q** is the corresponding pixel in the second image, then:
 q^TE**p** = 0
- $E = [t]_X R$
- For fixed p, q must satisfy:
 q^TI = 0, where I = Ep Epipolar line in 2nd image
- For fixed q, p must satisfy:
 I^Tp = 0 where I^T = q^TE, or I = E^tq
- Epipolar line in 1st image

• These are epipolar lines!

Essential matrix and epipoles

• $E = [t]_X R$

$$\vec{\mathbf{c}}_{2} = \mathbf{t}$$

$$\vec{\mathbf{c}}_{2}^{T} E = \mathbf{t}^{T} E = \mathbf{t}^{T} [\mathbf{t}]_{\times} R = 0$$

$$\vec{\mathbf{c}}_{2}^{T} E \mathbf{p} = 0 \quad \forall \mathbf{p}$$

- Ep is an epipolar line in 2nd image
- All epipolar lines in second image pass through c₂
- c₂ is epipole in 2nd image

Essential matrix and epipoles

•
$$\mathbf{E} = [\mathbf{t}]_{\mathsf{X}} \mathbf{R}$$

 $\vec{\mathbf{c}_1} = \mathbf{R}^T \mathbf{t}$
 $E\vec{\mathbf{c}_1} = [\mathbf{t}]_{\times} RR^T \mathbf{t} = [\mathbf{t}]_{\times} \mathbf{t} = 0$
 $\mathbf{q}^T E\vec{\mathbf{c}_1} = 0 \quad \forall \mathbf{q}$

- $E^{T}q$ is an epipolar line in 1^{st} image
- All epipolar lines in first image pass through c₁
- c_1 is the epipole in 1^{st} image

Essential matrix

- Assume intrinsic parameters (K) are identity
- For corresponding pixels **p** and **q**
- $\mathbf{q}^{\mathsf{T}}\mathbf{E}\mathbf{p} = \mathbf{0}$
- $E = [\mathbf{t}]_X R$
- Given pixel p in first image Ep is corresponding epipolar line in the second image
- Given pixel q in second image, E^Tq is corresponding epipolar line in first image

- We assumed that intrinsic parameters K are identity
- What if they are not?

$$\vec{\mathbf{x}}_{img}^{(1)} \equiv K_1 \begin{bmatrix} R_1 & \mathbf{t}_1 \end{bmatrix} \vec{\mathbf{x}}_w$$
$$\vec{\mathbf{x}}_{img}^{(2)} \equiv K_2 \begin{bmatrix} R_2 & \mathbf{t}_2 \end{bmatrix} \vec{\mathbf{x}}_w$$

 $\vec{\mathbf{x}}_{imq}^{(1)} \equiv K_1 \begin{bmatrix} I & 0 \end{bmatrix} \vec{\mathbf{x}}_w$ $\vec{\mathbf{x}}_{img}^{(2)} \equiv K_2 \begin{bmatrix} R & \mathbf{t} \end{bmatrix} \vec{\mathbf{x}}_w$

$$\lambda_1 \vec{\mathbf{x}}_{img}^{(1)} = K_1 \begin{bmatrix} I & \mathbf{0} \end{bmatrix} \vec{\mathbf{x}}_w$$
$$\lambda_2 \vec{\mathbf{x}}_{img}^{(2)} = K_2 \begin{bmatrix} R & \mathbf{t} \end{bmatrix} \vec{\mathbf{x}}_w$$

$$\lambda_{1} \vec{\mathbf{x}}_{img}^{(1)} = K_{1} \begin{bmatrix} I & \mathbf{0} \end{bmatrix} \vec{\mathbf{x}}_{w}$$
$$= K_{1} \begin{bmatrix} I & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{w} \\ 1 \end{bmatrix}$$

$$=K_1\mathbf{x}_w$$

$$\Rightarrow \lambda_1 K_1^{-1} \vec{\mathbf{x}}_{img}^{(1)} = \mathbf{x}_w$$

 $\lambda_2 \vec{\mathbf{x}}_{img}^{(2)} = K_2 \begin{bmatrix} R & \mathbf{t} \end{bmatrix} \begin{vmatrix} \mathbf{x}_w \\ 1 \end{vmatrix}$ $=K_2R\mathbf{x}_w+K_2\mathbf{t}$ $=\lambda_1 K_2 R K_1^{-1} \vec{\mathbf{x}}_{ima}^{(1)} + K_2 \mathbf{t}$ $\Rightarrow \lambda_2 K_2^{-1} \vec{\mathbf{x}}_{img}^{(2)} = \lambda_1 R K_1^{-1} \vec{\mathbf{x}}_{img}^{(1)} + \mathbf{t}$ $\Rightarrow \lambda_2[\mathbf{t}]_{\times} K_2^{-1} \vec{\mathbf{x}}_{imq}^{(2)} = \lambda_1[\mathbf{t}]_{\times} R K_1^{-1} \vec{\mathbf{x}}_{imq}^{(1)}$ $\Rightarrow 0 = \vec{\mathbf{x}}_{ima}^{(2)} K_2^{-T} [\mathbf{t}]_{\times} R K_1^{-1} \vec{\mathbf{x}}_{ima}^{(1)}$

$$\Rightarrow 0 = \vec{\mathbf{x}}_{img}^{(2)} K_2^{-T} [\mathbf{t}]_{\times} R K_1^{-1} \vec{\mathbf{x}}_{img}^{(1)}$$
$$\Rightarrow 0 = \vec{\mathbf{x}}_{img}^{(2)} F \vec{\mathbf{x}}_{img}^{(1)}$$

Fundamental matrix result

$\mathbf{q}^T \mathbf{F} \mathbf{p} = 0$

(Longuet-Higgins, 1981)

Properties of the Fundamental Matrix

- ${f Fp}$ s the epipolar line associated with ${f p}$
- $\mathbf{F}^T \mathbf{q}^{\mathsf{s}}$ s the epipolar line associated with

q

Properties of the Fundamental Matrix

- ${f Fp}$ is the epipolar line associated with ${f p}$
- $\mathbf{F}^T \mathbf{q}$ is the epipolar line associated with $\, \mathbf{q}$
- $\mathbf{F}\mathbf{e}_1 = \mathbf{0}$ and $\mathbf{F}^T\mathbf{e}_2 = \mathbf{0}$
- All epipolar lines contain epipole

Properties of the Fundamental Matrix

- ${f Fp}$ is the epipolar line associated with ${f p}$
- $\mathbf{F}^T \mathbf{q}$ is the epipolar line associated with \mathbf{q}
- $\mathbf{F}\mathbf{e}_1 = \mathbf{0}$ and $\mathbf{F}^T\mathbf{e}_2 = \mathbf{0}$
- ${f F}$ is rank 2

Why is F rank 2?

- F is a 3 x 3 matrix
- But there is a vector c_1 and c_2 such that $Fc_1 = 0$ and $F^Tc_2 = 0$

Fundamental matrix song

Estimating **F**

- If we don't know K₁, K₂, R, or t, can we estimate F for two images?
- Yes, given enough correspondences

Estimating F – 8-point algorithm

• The fundamental matrix F is defined by

$$\mathbf{x'}^{\mathrm{T}}\mathbf{F}\mathbf{x} = \mathbf{0}$$

for any pair of matches x and x' in two images.

• Let
$$\mathbf{x} = (u, v, 1)^{\mathsf{T}}$$
 and $\mathbf{x}' = (u', v', 1)^{\mathsf{T}}$, $\mathbf{F} = \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix}$

each match gives a linear equation

 $uu'f_{11} + vu'f_{12} + u'f_{13} + uv'f_{21} + vv'f_{22} + v'f_{23} + uf_{31} + vf_{32} + f_{33} = 0$

• In reality, instead of solving Af = 0, we seek f to minimize $\|\mathbf{A}\mathbf{f}\|$, least eigenvector of $\mathbf{A}^{\mathrm{T}}\mathbf{A}$.

8-point algorithm – Problem?

- F should have rank 2
- To enforce that **F** is of rank 2, F is replaced by F' that minimizes $\|\mathbf{F} \mathbf{F}'\|$ subject to the rank constraint.

• This is achieved by SVD. Let $\mathbf{F} = \mathbf{U}\Sigma\mathbf{V}$, where

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix}, \text{ let } \Sigma' = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

then $\mathbf{F'} = \mathbf{U} \boldsymbol{\Sigma'} \mathbf{V}^{\mathrm{T}}$ is the solution.

Recovering camera parameters from F / E

 Can we recover R and t between the cameras from F?

$$F = K_2^{-T}[\mathbf{t}]_{\times} R K_1^{-1}$$

- No: K₁ and K₂ are in principle arbitrary matrices
- What if we knew K₁ and K₂ to be identity?

$$E = [\mathbf{t}]_{\times} R$$

Recovering camera parameters from E

$$E = [\mathbf{t}]_{\times} R$$
$$\mathbf{t}^T E = \mathbf{t}^T [\mathbf{t}]_{\times} R = 0$$
$$E^T \mathbf{t} = 0$$

- **t** is a solution to $E^T \mathbf{x} = \mathbf{0}$
- Can't distinguish between t and ct for constant scalar c
- How do we recover R?

Recovering camera parameters from E

- $E = [\mathbf{t}]_{\times} R$
 - We know E and t
 - Consider taking SVD of E and $[\mathbf{t}]_X$

$$[\mathbf{t}]_{\times} = U\Sigma V^{T}$$
$$E = U'\Sigma' V'^{T}$$
$$U'\Sigma' V'^{T} = E = [\mathbf{t}]_{\times}R = U\Sigma V^{T}R$$
$$U'\Sigma' V'^{T} = U\Sigma V^{T}R$$
$$V'^{T} = V^{T}R$$

Recovering camera parameters from E

- $E = [\mathbf{t}]_{\times} R$ $\mathbf{t}^T E = \mathbf{t}^T [\mathbf{t}]_{\times} R = 0$ $E^T \mathbf{t} = 0$
 - **t** is a solution to $E^T \mathbf{x} = \mathbf{0}$
 - Can't distinguish between t and ct for constant scalar c

8-point algorithm

- Pros: it is linear, easy to implement and fast
- Cons: susceptible to noise
- Degenerate: if points are on same plane

- Normalized 8-point algorithm: Hartley
 - Position origin at centroid of image points
 - Rescale coordinates so that center to farthest point is sqrt (2)

Other approaches to obtaining 3D structure

Active stereo with structured light

- Project "structured" light patterns onto the object
 - simplifies the correspondence problem
 - Allows us to use only one camera

L. Zhang, B. Curless, and S. M. Seitz. <u>Rapid Shape Acquisition Using Color Structured Light and</u> <u>Multi-pass Dynamic Programming</u>. *3DPVT* 2002

Active stereo with structured light

L. Zhang, B. Curless, and S. M. Seitz. <u>Rapid Shape Acquisition Using Color Structured Light</u> and <u>Multi-pass Dynamic Programming</u>. *3DPVT* 2002

Microsoft Kinect

