Two-view geometry

Stereo head

Kinect / depth cameras

Stereo with rectified cameras

- Special case: cameras are parallel to each other and translated along X axis

Perspective projection in rectified cameras

- Without loss of generality, assume origin is at pinhole of $1^{\text {st }}$ camera

$$
\begin{aligned}
& \overrightarrow{\mathbf{x}}_{i m g}^{(1)} \equiv\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
& \overrightarrow{\mathbf{x}}_{i m g}^{(2)} \equiv\left[\begin{array}{ll}
I & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
& \mathbf{t}=\left[\begin{array}{c}
t_{x} \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Perspective projection in rectified cameras

- Without loss of generality, assume origin is at pinhole of $1^{\text {st }}$ camera
X coordinate differs by $\mathrm{t}_{\mathrm{x}} / \mathrm{Z}$
$x_{1}=\frac{X}{Z} \quad x_{2}=\frac{X+t_{x}}{Z}$
$y_{1}=\frac{Y}{Z} \quad y_{2}=\frac{Y}{Z}$
Y coordinate is the same!

Perspective projection in rectified cameras

- disparity $=t_{x} / Z$
- If t_{x} is known, disparity gives Z
- Otherwise, disparity gives Z in units of t_{x}
- Small-baseline, near depth = large-baseline, far depth

Perspective projection in rectified cameras

- For rectified cameras, correspondence problem is easier
- Only requires searching along a particular row.

Rectifying cameras

- Given two images from two cameras with known

Rectifying cameras

- Can we rotate / translate cameras?
- Do we need to know the 3D structure of the world to do this?

Rotating cameras

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}
$$

- Assume K is identity
- Assume coordinate system at camera pinhole

$$
\begin{aligned}
\overrightarrow{\mathbf{x}}_{i m g} & \equiv\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
& \equiv\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right] \\
& \equiv \mathbf{x}_{w}
\end{aligned}
$$

Rotating cameras

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}
$$

- Assume K is identity
- Assume coordinate system at camera pinhole

$$
\begin{aligned}
\overrightarrow{\mathbf{x}}_{i m g} & \equiv\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
& \equiv\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right] \\
& \equiv \mathbf{x}_{w}
\end{aligned}
$$

Rotating cameras

$$
\begin{aligned}
& \overrightarrow{\mathbf{x}}_{i m g} \equiv\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right] \\
& \overrightarrow{\mathbf{x}}_{i m g} \equiv \mathbf{x}_{w}
\end{aligned}
$$

- What happens if the camera is rotated?

$$
\begin{aligned}
\overrightarrow{\mathbf{x}}_{i m g}^{\prime} & \equiv\left[\begin{array}{ll}
R & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right] \\
& \equiv R \mathbf{x}_{w} \\
& \equiv R \overrightarrow{\mathbf{x}}_{i m g}
\end{aligned}
$$

Rotating cameras

- What happens if the camera is rotated?

- No need to know the 3D structure

Rotating cameras

Rectifying cameras

Rectifying cameras

Rectifying cameras

Rectifying cameras

Perspective projection in rectified cameras

- For rectified cameras, correspondence problem is easier
- Only requires searching along a particular row.

Perspective projection in rectified cameras

What about non-

 rectified cameras?Is there an equivalent?

- Forto easi
- Only requir

Epipolar constraint

- Reduces 2D search problem to search along a particular line: epipolar line

Epipolar constraint

True in general!

- Given pixel (x, y) in one image, corresponding pixel in the other image must lie on a line
- Line function of (x, y) and parameters of camera
- These lines are called epipolar line

Epipolar geometry

Epipolar geometry - why?

- For a single camera, pixel in image plane must correspond to point somewhere along a ray

Epipolar geometry

- When viewed in second image, this ray looks like a line: epipolar line
- The epipolar line must pass through image of the first camera in the second image - epipole

Epipolar geometry

Given an image point in one view, where is the corresponding point in the other view?

- A point in one view "generates" an epipolar line in the other view
- The corresponding point lies on this line

Epipolar line

Epipolar constraint

- Reduces correspondence problem to 1D search along an epipolar line

Epipolar lines

Epipolar lines

Epipolar lines

Epipolar geometry continued

Epipolar geometry is a consequence of the coplanarity of the camera centres and scene point

The camera centres, corresponding points and scene point lie in a single plane, known as the epipolar plane

Nomenclature

- The epipolar line I^{\prime} is the image of the ray through \mathbf{x}
- The epipole \mathbf{e} is the point of intersection of the line joining the camera centres with the image plane
- this line is the baseline for a stereo rig, and
- the translation vector for a moving camera
- The epipole is the image of the centre of the other camera: $\mathbf{e}=P C^{\prime}, \mathbf{e}^{\prime}=\mathrm{P}^{\prime} \mathbf{C}$

The epipolar pencil X

As the position of the 3D point \mathbf{X} varies, the epipolar planes "rotate" about the baseline. This family of planes is known as an epipolar pencil (a pencil is a one parameter family).

All epipolar lines intersect at the epipole.

The epipolar pencil

As the position of the 3D point \mathbf{X} varies, the epipolar planes "rotate" about the baseline. This family of planes is known as an epipolar pencil (a pencil is a one parameter family).

All epipolar lines intersect at the epipole.

Epipolar geometry - the math

- Assume intrinsic parameters K are identity
- Assume world coordinate system is centered at $1^{\text {st }}$ camera pinhole with Z along viewing direction

$$
\begin{aligned}
& \overrightarrow{\mathbf{x}}_{i m g}^{(1)} \equiv K_{1}\left[\begin{array}{ll}
R_{1} & \left.\mathbf{t}_{1}\right]
\end{array} \overrightarrow{\mathbf{x}}_{w}\right. \\
& \overrightarrow{\mathbf{x}}_{i m g}^{(2)} \equiv K_{2}\left[\begin{array}{ll}
R_{2} & \mathbf{t}_{2}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}
\end{aligned}
$$

Epipolar geometry - the math

- Assume intrinsic parameters K are identity
- Assume world coordinate system is centered at $1^{\text {st }}$ camera pinhole with Z along viewing direction

$$
\begin{aligned}
& \overrightarrow{\mathbf{x}}_{i m g}^{(1)} \equiv\left[\begin{array}{ll}
I & 0
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
& \overrightarrow{\mathbf{x}}_{i m g}^{(2)} \equiv\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}
\end{aligned}
$$

Epipolar geometry - the math

- Assume intrinsic parameters K are identity
- Assume world coordinate system is centered at $1^{\text {st }}$ camera pinhole with Z along viewing direction

$$
\begin{aligned}
& \overrightarrow{\mathbf{x}}_{i m g}^{(1)} \equiv\left[\begin{array}{ll}
I & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right]=\mathbf{x}_{w} \\
& \overrightarrow{\mathbf{x}}_{i m g}^{(2)} \equiv\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right]=R \mathbf{x}_{w}+\mathbf{t}
\end{aligned}
$$

Epipolar geometry - the math

- Assume intrinsic parameters K are identity
- Assume world coordinate system is centered at $1^{\text {st }}$ camera pinhole with Z along viewing direction

$$
\begin{gathered}
\overrightarrow{\mathbf{x}}_{i m g}^{(1)} \equiv \mathbf{x}_{w} \\
\overrightarrow{\mathbf{x}}_{i m g}^{(2)} \equiv R \mathbf{x}_{w}+\mathbf{t}
\end{gathered}
$$

Epipolar geometry - the math

- Assume intrinsic parameters K are identity
- Assume world coordinate system is centered at $1^{\text {st }}$ camera pinhole with Z along viewing direction

$$
\begin{gathered}
\lambda_{1} \overrightarrow{\mathbf{x}}_{i m g}^{(1)}=\mathbf{x}_{w} \\
\lambda_{2} \overrightarrow{\mathbf{x}}_{i m g}^{(2)}=R \mathbf{x}_{w}+\mathbf{t}
\end{gathered}
$$

Epipolar geometry - the math

$$
\begin{gathered}
\lambda_{2} \overrightarrow{\mathbf{x}}_{i m g}^{(2)}=\lambda_{1} R \overrightarrow{\mathbf{x}}_{i m g}^{(1)}+\mathbf{t} \\
\lambda_{2} \mathbf{t} \times \overrightarrow{\mathbf{x}}_{i m g}^{(2)}=\lambda_{1} \mathbf{t} \times R \overrightarrow{\mathbf{x}}_{i m g}^{(1)}+\mathbf{t} \nless \mathbf{t} \\
\lambda_{2} \mathbf{t} \times \overrightarrow{\mathbf{x}}_{i m g}^{(2)}=\lambda_{1} \mathbf{t} \times R \overrightarrow{\mathbf{x}}_{i m g}^{(1)} \\
\lambda_{2} \overrightarrow{\mathbf{x}}_{i m g}^{(2)} \times \overrightarrow{\mathbf{x}}_{i m g}^{(2)}=\lambda_{1} \overrightarrow{\mathbf{x}}_{i m g}^{(2)} \cdot \mathbf{t} \times R \overrightarrow{\mathbf{x}}_{i m g}^{(1)} \\
0=\lambda_{1} \overrightarrow{\mathbf{x}}_{i m g}^{(2)} \cdot \mathbf{t} \times R \overrightarrow{\mathbf{x}}_{i m g}^{(1)}
\end{gathered}
$$

Epipolar geometry - the math

$$
\overrightarrow{\mathbf{x}}_{i m g}^{(2)} \cdot \mathbf{t} \times R \overrightarrow{\mathbf{x}}_{i m g}^{(1)}=0
$$

- Can we write this as matrix vector operations?
- Cross product can be written as a matrix

$$
\begin{aligned}
{[\mathbf{t}]_{\times}=} & {\left[\begin{array}{ccc}
0 & -t_{z} & t_{y} \\
t_{z} & 0 & -t_{x} \\
-t_{y} & t_{x} & 0
\end{array}\right] } \\
& {[\mathbf{t}]_{\times} \mathbf{a}=\mathbf{t} \times \mathbf{a} }
\end{aligned}
$$

Epipolar geometry - the math

$$
\overrightarrow{\mathbf{x}}_{i m g}^{(2)} \cdot[\mathbf{t}]_{\times} R \overrightarrow{\mathbf{x}}_{i m g}^{(1)}=0
$$

- Can we write this as matrix vector operations?
- Dot product can be written as a vector-vector times

$$
\mathbf{a} \cdot \mathbf{b}=\mathbf{a}^{T} \mathbf{b}
$$

Epipolar geometry - the math

$$
\overrightarrow{\mathbf{x}}_{i m g}^{(2)} \cdot[\mathbf{t}]_{\times} R \overrightarrow{\mathbf{x}}_{i m g}^{(1)}=0
$$

- Can we write this as matrix vector operations?
- Dot product can be written as a vector-vector times

$$
\mathbf{a} \cdot \mathbf{b}=\mathbf{a}^{T} \mathbf{b}
$$

Epipolar geometry - the math

$$
\begin{gathered}
\overrightarrow{\mathbf{x}}_{i m g}^{(2) T}[\mathbf{t}]_{\times} R \overrightarrow{\mathbf{x}}_{i m g}^{(1)}=0 \\
\overrightarrow{\mathbf{x}}_{i m g}^{(2) T} E \overrightarrow{\mathbf{x}}_{i m g}^{(1)}=0
\end{gathered}
$$

Epipolar geometry - the math

Essential matrix

Epipolar constraint and epipolar lines

$$
\overrightarrow{\mathbf{x}}_{i m g}^{(2) T} E \overrightarrow{\mathbf{x}}_{i m g}^{(1)}=0
$$

- Consider a known, fixed pixel in the first image
- What constraint does this place on the corresponding pixel?

$$
\overrightarrow{\mathbf{x}}_{i m g}^{(2) T} \mathbf{l}=0 \quad \text { where } \quad \mathbf{l}=E \overrightarrow{\mathbf{x}}_{i m g}^{(1)}
$$

- What kind of equation is this?

Epipolar constraint and epipolar

 lines$$
\overrightarrow{\mathbf{x}}_{i m g}^{(2) T} E \overrightarrow{\mathbf{x}}_{i m g}^{(1)}=0
$$

- Consider a known, fixed pixel in the first image
- $\quad \overrightarrow{\mathbf{x}}_{i m g}^{(2) T} \mathbf{l}=0 \quad$ where $\quad \mathbf{l}=E \overrightarrow{\mathbf{x}}_{i m g}^{(1)}$

$$
\begin{aligned}
\overrightarrow{\mathbf{x}}_{i m g}^{(2) T} \mathbf{l} & =0 \\
\Rightarrow\left[\begin{array}{lll}
x_{2} & y_{2} & 1
\end{array}\right]\left[\begin{array}{l}
l_{x} \\
l_{y} \\
l_{z}
\end{array}\right] & =0 \\
\Rightarrow l_{x} x_{2}+l_{y} y_{2}+l_{z} & =0
\end{aligned}
$$

Epipolar constraint: putting it all together

- If \mathbf{p} is a pixel in first image and \mathbf{q} is the corresponding pixel in the second image, then: $\mathbf{q}^{\top} E \boldsymbol{p}=0$
- $E=[t]_{x} R$
- For fixed \mathbf{p}, \mathbf{q} must satisfy: $\mathbf{q}^{\top} \mathbf{I}=0$, where $\mathbf{I}=\mathrm{Ep}$
- For fixed \mathbf{q}, \mathbf{p} must satisfy: $\mathbf{I}^{\top} \mathbf{p}=0$ where $\mathbf{I}^{\top}=\mathbf{q}^{\top} \mathrm{E}$, or $\mathbf{I}=\mathrm{E}^{\mathrm{t}} \mathbf{q}$
- These are epipolar lines!

Essential matrix and epipoles

- $E=[t]_{X} R$

$$
\begin{aligned}
& \overrightarrow{\mathbf{c}_{2}}=\mathbf{t} \\
& {\overrightarrow{\mathbf{c}_{\boldsymbol{2}}}}^{T} E=\mathbf{t}^{T} E=\mathbf{t}^{T}[\mathbf{t}]_{\times} R=0 \\
& \overrightarrow{\mathbf{c}_{2}} E \mathbf{p}=0 \quad \forall \mathbf{p}
\end{aligned}
$$

- Ep is an epipolar line in $2^{\text {nd }}$ image
- All epipolar lines in second image pass through c_{2}
- c_{2} is epipole in $2^{\text {nd }}$ image

Essential matrix and epipoles

- $E=[t]_{X} R$

$$
\begin{aligned}
& \overrightarrow{\mathbf{c}_{1}}=\mathbf{R}^{T} \mathbf{t} \\
& E \overrightarrow{\mathbf{c}_{1}}=[\mathbf{t}]_{\times} R R^{T} \mathbf{t}=[\mathbf{t}]_{\times} \mathbf{t}=0 \\
& \mathbf{q}^{T} E \overrightarrow{\mathbf{c}_{1}}=0 \quad \forall \mathbf{q}
\end{aligned}
$$

- $\mathrm{E}^{\top} \boldsymbol{q}$ is an epipolar line in $1^{\text {st }}$ image
- All epipolar lines in first image pass through c_{1}
- c_{1} is the epipole in $1^{\text {st }}$ image

