Two-view geometry

Stereo head

Kinect / depth cameras

Stereo with rectified cameras

 Special case: cameras are parallel to each other and translated along X axis

 Without loss of generality, assume origin is at pinhole of 1st camera

$$\vec{\mathbf{x}}_{img}^{(1)} \equiv \begin{bmatrix} I & \mathbf{0} \end{bmatrix} \vec{\mathbf{x}}_w$$
$$\vec{\mathbf{x}}_{img}^{(2)} \equiv \begin{bmatrix} I & \mathbf{t} \end{bmatrix} \vec{\mathbf{x}}_w$$
$$\mathbf{t} = \begin{bmatrix} t_x \\ 0 \\ 0 \end{bmatrix}$$

 Without loss of generality, assume origin is at pinhole of 1st camera

- disparity = t_x/Z
- If t_x is known, disparity gives Z
- Otherwise, disparity gives Z in units of t_x
 - Small-baseline, near depth = large-baseline, far depth

- For rectified cameras, correspondence problem is easier
- Only requires searching along a particular *row.*

 Given two images from two cameras with known relationship, can we rectify them?

- Can we rotate / translate cameras?
 - Do we need to know the 3D structure of the world to do this?

Rotating cameras

$$\vec{\mathbf{x}}_{img} \equiv K \begin{bmatrix} R & \mathbf{t} \end{bmatrix} \vec{\mathbf{x}}_w$$

- Assume K is identity
- Assume coordinate system at camera pinhole

$$\vec{\mathbf{x}}_{img} \equiv \begin{bmatrix} I & \mathbf{0} \end{bmatrix} \vec{\mathbf{x}}_w \\ \equiv \begin{bmatrix} I & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}_w \\ 1 \end{bmatrix}$$

 $=\mathbf{X}_{\mathcal{W}}$

Rotating cameras

$$\vec{\mathbf{x}}_{img} \equiv K \begin{bmatrix} R & \mathbf{t} \end{bmatrix} \vec{\mathbf{x}}_w$$

- Assume K is identity
- Assume coordinate system at camera pinhole

$$\vec{\mathbf{x}}_{img} \equiv \begin{bmatrix} I & \mathbf{0} \end{bmatrix} \vec{\mathbf{x}}_w \\ \equiv \begin{bmatrix} I & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}_w \\ 1 \end{bmatrix}$$

 $=\mathbf{X}_w$

Rotating cameras $\vec{\mathbf{x}}_{img} \equiv \begin{bmatrix} I & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}_w \\ 1 \end{bmatrix}$ $\vec{\mathbf{x}}_{img} \equiv \mathbf{x}_w$

• What happens if the camera is rotated? $\vec{\mathbf{x}}'_{img} \equiv \begin{bmatrix} R & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}_w \\ 1 \end{bmatrix}$ $\equiv R\mathbf{x}_w$ $\equiv R\vec{\mathbf{x}}_{img}$

Rotating cameras

• What happens if the camera is rotated?

• No need to know the 3D structure

Rotating cameras

- For rectified cameras, correspondence problem is easier
- Only requires searching along a particular *row.*

What about nonrectified cameras? Is there an equivalent?

- For the easier
- Only require

along particular row.

ropre

Epipolar constraint

• Reduces 2D search problem to search along a particular line: *epipolar line*

Epipolar constraint

True in general!

- Given pixel (x,y) in one image, corresponding pixel in the other image must lie on a line
- Line function of (x,y) and parameters of camera
- These lines are called *epipolar line*

Epipolar geometry

Epipolar geometry - why?

• For a single camera, pixel in image plane must correspond to point somewhere along a ray

Epipolar geometry

- When viewed in second image, this ray looks like a line: *epipolar line*
- The epipolar line must pass through image of the first camera in the second image *epipole*

Epipolar geometry

Given an image point in one view, where is the corresponding point in the other view?

- A point in one view "generates" an epipolar line in the other view
- The corresponding point lies on this line

Epipolar line

Epipolar constraint

 Reduces correspondence problem to 1D search along an epipolar line

Epipolar lines

Epipolar lines

Epipolar lines

Epipolar geometry continued

Epipolar geometry is a consequence of the coplanarity of the camera centres and scene point

The camera centres, corresponding points and scene point lie in a single plane, known as the **epipolar plane**

- The epipolar line \mathbf{l}' is the image of the ray through \mathbf{x}
- The epipole e is the point of intersection of the line joining the camera centres with the image plane
 - this line is the baseline for a stereo rig, and
 - the translation vector for a moving camera
- The epipole is the image of the centre of the other camera: e = PC', e' = P'C

As the position of the 3D point \mathbf{X} varies, the epipolar planes "rotate" about the baseline. This family of planes is known as an epipolar pencil (a pencil is a one parameter family).

All epipolar lines intersect at the epipole.

As the position of the 3D point \mathbf{X} varies, the epipolar planes "rotate" about the baseline. This family of planes is known as an epipolar pencil (a pencil is a one parameter family).

All epipolar lines intersect at the epipole.

- Assume intrinsic parameters K are identity
- Assume world coordinate system is centered at 1st camera pinhole with Z along viewing direction

$$\vec{\mathbf{x}}_{img}^{(1)} \equiv K_1 \begin{bmatrix} R_1 & \mathbf{t}_1 \end{bmatrix} \vec{\mathbf{x}}_w$$
$$\vec{\mathbf{x}}_{img}^{(2)} \equiv K_2 \begin{bmatrix} R_2 & \mathbf{t}_2 \end{bmatrix} \vec{\mathbf{x}}_w$$

- Assume intrinsic parameters K are identity
- Assume world coordinate system is centered at 1st camera pinhole with Z along viewing direction

$$\vec{\mathbf{x}}_{img}^{(1)} \equiv \begin{bmatrix} I & 0 \end{bmatrix} \vec{\mathbf{x}}_w$$
$$\vec{\mathbf{x}}_{img}^{(2)} \equiv \begin{bmatrix} R & \mathbf{t} \end{bmatrix} \vec{\mathbf{x}}_w$$

- Assume intrinsic parameters K are identity
- Assume world coordinate system is centered at 1st camera pinhole with Z along viewing direction

$$\vec{\mathbf{x}}_{img}^{(1)} \equiv \begin{bmatrix} I & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x}_w \\ 1 \end{bmatrix} = \mathbf{x}_w$$
$$\vec{\mathbf{x}}_{img}^{(2)} \equiv \begin{bmatrix} R & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{x}_w \\ 1 \end{bmatrix} = R\mathbf{x}_w + \mathbf{t}$$

- Assume intrinsic parameters K are identity
- Assume world coordinate system is centered at 1st camera pinhole with Z along viewing direction

$$ec{\mathbf{x}}_{img}^{(1)} \equiv \mathbf{x}_w$$

 $ec{\mathbf{x}}_{img}^{(2)} \equiv R\mathbf{x}_w + \mathbf{t}$

- Assume intrinsic parameters K are identity
- Assume world coordinate system is centered at 1st camera pinhole with Z along viewing direction

$$\lambda_1 \vec{\mathbf{x}}_{img}^{(1)} = \mathbf{x}_w$$

$$\lambda_2 \vec{\mathbf{x}}_{img}^{(2)} = R \mathbf{x}_w + \mathbf{t}$$

Epipolar geometry - the math $\vec{\mathbf{x}}_{imq}^{(2)} \cdot \mathbf{t} \times R\vec{\mathbf{x}}_{imq}^{(1)} = 0$

- Can we write this as matrix vector operations?
- Cross product can be written as a matrix

$$[\mathbf{t}]_{ imes} = \begin{bmatrix} 0 & -t_z & t_y \ t_z & 0 & -t_x \ -t_y & t_x & 0 \end{bmatrix}$$
 $[\mathbf{t}]_{ imes} \mathbf{a} = \mathbf{t} imes \mathbf{a}$

Epipolar geometry - the math $\vec{\mathbf{x}}_{img}^{(2)} \cdot [\mathbf{t}]_{\times} R \vec{\mathbf{x}}_{img}^{(1)} = 0$

- Can we write this as matrix vector operations?
- Dot product can be written as a vector-vector times

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^T \mathbf{b}$$

Epipolar geometry - the math $\vec{\mathbf{x}}_{img}^{(2)} \cdot [\mathbf{t}]_{\times} R \vec{\mathbf{x}}_{img}^{(1)} = 0$

- Can we write this as matrix vector operations?
- Dot product can be written as a vector-vector times

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^T \mathbf{b}$$

 $\vec{\mathbf{x}}_{img}^{(2)T}[\mathbf{t}]_{\times}R\vec{\mathbf{x}}_{img}^{(1)} = 0$ $\vec{\mathbf{x}}_{img}^{(2)T} E \vec{\mathbf{x}}_{img}^{(1)} = 0$

Epipolar constraint and epipolar lines

$$\vec{\mathbf{x}}_{img}^{(2)T} E \vec{\mathbf{x}}_{img}^{(1)} = 0$$

- Consider a known, fixed pixel in the first image
- What constraint does this place on the corresponding pixel?

•
$$\vec{\mathbf{x}}_{img}^{(2)T}\mathbf{l} = 0$$
 where $\mathbf{l} = E\vec{\mathbf{x}}_{img}^{(1)}$

• What kind of equation is this?

Epipolar constraint and epipolar lines

$$\vec{\mathbf{x}}_{img}^{(2)T} E \vec{\mathbf{x}}_{img}^{(1)} = 0$$

- Consider a known, fixed pixel in the first image
- $\vec{\mathbf{x}}_{img}^{(2)T} \mathbf{l} = 0$ where $\mathbf{l} = E\vec{\mathbf{x}}_{img}^{(1)}$ $\vec{\mathbf{x}}_{img}^{(2)T} \mathbf{l} = 0$ $\Rightarrow \begin{bmatrix} x_2 & y_2 & 1 \end{bmatrix} \begin{bmatrix} l_x \\ l_y \\ l_z \end{bmatrix} = 0$ $\Rightarrow l_x x_2 + l_y y_2 + l_z = 0$

Epipolar constraint: putting it all together

- If **p** is a pixel in first image and **q** is the corresponding pixel in the second image, then:
 q^TE**p** = 0
- $E = [t]_X R$
- For fixed p, q must satisfy:
 q^TI = 0, where I = Ep Epipolar line in 2nd image
- For fixed q, p must satisfy:
 I^Tp = 0 where I^T = q^TE, or I = E^tq
- Epipolar line in 1st image

• These are epipolar lines!

Essential matrix and epipoles

• $E = [t]_X R$

$$\vec{\mathbf{c}}_{2} = \mathbf{t}$$

$$\vec{\mathbf{c}}_{2}^{T} E = \mathbf{t}^{T} E = \mathbf{t}^{T} [\mathbf{t}]_{\times} R = 0$$

$$\vec{\mathbf{c}}_{2}^{T} E \mathbf{p} = 0 \quad \forall \mathbf{p}$$

- Ep is an epipolar line in 2nd image
- All epipolar lines in second image pass through c₂
- c₂ is epipole in 2nd image

Essential matrix and epipoles

•
$$\mathbf{E} = [\mathbf{t}]_{\mathsf{X}} \mathbf{R}$$

 $\vec{\mathbf{c}_1} = \mathbf{R}^T \mathbf{t}$
 $E\vec{\mathbf{c}_1} = [\mathbf{t}]_{\times} RR^T \mathbf{t} = [\mathbf{t}]_{\times} \mathbf{t} = 0$
 $\mathbf{q}^T E\vec{\mathbf{c}_1} = 0 \quad \forall \mathbf{q}$

- $E^{T}q$ is an epipolar line in 1^{st} image
- All epipolar lines in first image pass through c₁
- c_1 is the epipole in 1^{st} image