RANSAC continued

Homography estimation

Homography estimation

Homography estimation

Homography estimation

Camera calibration

$$
\min _{\mathbf{p}}\|A \mathbf{p}\|^{2} \text { s.t } \quad\|\mathbf{p}\|=1
$$

Homography estimation

Homography estimation: obtaining correspondences

$$
\min _{\mathbf{h}}\|A \mathbf{h}\|^{2} \text { s.t }\|\mathbf{h}\|=1
$$

Homography estimation

Given images A and B

1. Compute image features for A and B
2. Match features between A and B
3. Compute homography between A and B

What do we do when correspondences are incorrect?

Homography fitting and incorrect correspondences

$$
\min _{\mathbf{h}}\|A \mathbf{h}\|^{2} \text { s.t }\|\mathbf{h}\|=1
$$

- Correspondences create matrix A
- What if many correspondences are actually incorrect?
- Even true H cannot satisfy constraint!
- Outliers

Outliers

outliers

A general class of problems

- Need to "fit a model", i.e., "find parameters"
- e.g., H for homography
- Have some data points to find parameters
- e.g. correspondences ($x_{w}, x_{i m g}$)
- Need at least k data points to find parameters
- e.g., 4 correspondences for homography
- Many data points might be completely incorrect, i.e., even correct model won't fit them
- e.g., incorrect correspondences

Another example

- Need to "fit a model", i.e., "find parameters"
- e.g., m,b for line fitting
- Have some data points to find parameters
- e.g. points (x, y)
- Need at least k data points to find parameters
- e.g., 2 points for line
- Many data points might be completely incorrect, i.e.,
 even correct model won't fit them

Robustness

Problem: Fit a line to these datapoints

Robust model fitting

- Correct data = "inliers", incorrect data = "outliers"
- If we knew inliers, fitting model is easy
- e.g., for homography, set up matrix A

$$
\min _{\mathbf{h}}\|A \mathbf{h}\|^{2} \text { s.t }\|\mathbf{h}\|=1
$$

- If we knew model, identifying inliers is easy
- Inliers agree with model, outliers disagree
- Chicken and egg problem!

Key idea

- A single model will satisfy all inliers
- No single model will satisfy all outliers
- Outliers will all disagree on model they like
"Happy families are all alike; every unhappy family is unhappy in its own way."
-Leo Tolstoy, Ana Karenina

Key idea

- Identify model that agrees with most points
- Given a hypothesized line
- Count the number of points that "agree" with the line
- "Agree" = within a small distance of the line
- I.e., the inliers to that line
- For all possible lines, select the one with the largest number of inliers

Counting inliers

Counting inliers

Inliers: 3

Counting inliers

How do we find the best line?

- Unlike least-squares, no simple closed-form solution
- Hypothesize-and-test
- Try out many lines, keep the best one
- Which lines?

RANSAC (Random Sample Consensus)

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Line fitting example

$$
N_{I}=6
$$

Algorithm:

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Algorithm:

$$
N_{I}=14
$$

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

- Idea:
- All the inliers will agree with each other on the translation vector; the (hopefully small) number of outliers will (hopefully) disagree with each other
- RANSAC only has guarantees if there are < 50\% outliers
- "All good matches are alike; every bad match is bad in its own way."
- Tolstoy via Alyosha Efros

RANSAC

- Inlier threshold related to the amount of noise we expect in inliers
- Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)
- Number of rounds related to the percentage of outliers we expect, and the probability of success we'd like to guarantee
- Suppose there are 20% outliers, and we want to find the correct answer with 99\% probability
- How many rounds do we need?

How many rounds?

- If we have to choose k samples each time
- with an inlier ratio p
- and we want the right answer with probability P

proportion of inliers p								
k	95%	90%	80%	75%	70%	60%	50%	
2	2	3	5	6	7	11	17	
3	3	4	7	9	11	19	35	
4	3	5	9	13	17	34	72	
5	4	6	12	17	26	57	146	
6	4	7	16	24	37	97	293	
7	4	8	20	33	54	163	588	
8	5	9	26	44	78	272	1177	

To ensure that the random sampling has a good chance of finding a true set of inliers, a sufficient number of trials S must be tried. Let p be the probability that any given correspondence is valid and P be the total probability of success after S trials. The likelihood in one trial that all k random samples are inliers is p^{k}. Therefore, the likelihood that S such trials will all fail is

$$
\begin{equation*}
1-P=\left(1-p^{k}\right)^{S} \tag{6.29}
\end{equation*}
$$

and the required minimum number of trials is

$$
\begin{equation*}
S=\frac{\log (1-P)}{\log \left(1-p^{k}\right)} \tag{6.30}
\end{equation*}
$$

proportion of inliers p								
k	95%	90%	80%	75%	70%	60%	50%	
2	2	3	5	6	7	11	17	
3	3	4	7	9	11	19	35	
4	3	5	9	13	17	34	72	
5	4	6	12	17	26	57	146	
6	4	7	16	24	37	97	293	
7	4	8	20	33	54	163	588	
8	5	9	26	44	78	272	1177	
$P=0.99$								

RANSAC pros and cons

- Pros
- Simple and general
- Applicable to many different problems
- Often works well in practice
- Cons
- Parameters to tune
- Sometimes too many iterations are required
- Can fail for extremely low inlier ratios

RANSAC

- An example of a "voting"-based fitting scheme
- Each hypothesis gets voted on by each data point, best hypothesis wins
- There are many other types of voting schemes
- E.g., Hough transforms...

Hough transform

-What possible lines can this point lie on?

- (m, b) must satisfy: $y=m x+b$
- This is the equation of a line in m and b

Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Given a set of points, find the curve or line that explains the data points best

$$
y=m x+b
$$

Hough Transform: Outline

1. Create a grid of parameter values
2. Each point votes for a set of parameters, incrementing those values in grid
3. Find maximum or local maxima in grid

Hough transform

Hough transform

$d=x \cos \theta+y \sin \theta$

Hough transform

Hough transform : circles

- Suppose we want to fit circles to points
- Assume we know the radius, but don't know the centres

- Given a point (x, y), what possible circles of radius r can it lie on?
- center $\left(c_{x}, c_{y}\right)$ must satisfy $\left(x-c_{x}\right)^{2}+\left(y-c_{y}\right)^{2}=r^{2}$
- center must lie on a circle!

Hough transform : circles

- Suppose we want to fit circles to points
- Assume we know the radius, but don't know the centres

- Given a point (x, y), what possible circles of radius r can it lie on?
- center $\left(c_{x}, c_{y}\right)$ must satisfy $\left(x-c_{x}\right)^{2}+\left(y-c_{y}\right)^{2}=r^{2}$
- center must lie on a circle!

Hough transform: circles

- What happens if we don't know the radius of the circle?
- How big should the Hough space be?

Hough transform: general form

- Suppose we have to fit a model with some parameters to some data
- Construct a grid of parameter values
- d parameters with k possible values for each: $\underbrace{k x k x \ldots x k}_{d \text { times }}$ array
- k^{d} elements
- Each data point puts in a vote for all sets of parameter values it likes
- Look for parameter settings with votes>threshold

Hough transform

- Simple
- Can deal with multiple correct answers
- Can only work if only a small number of parameters to fit (e.g. 2-3)
- Can we use this for homography fitting?

