A special case of
calibration



Camera calibration




Camera calibration = pose
estimation

e Estimating where camera is relative to object in
world

= Estimating where object is relative to camera
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What if object of interest is
plane?

 Not that uncommon....
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What if object of interest is
plane?




What if object of interest is a
plane?

* Imagine that plane is equipped with two axes.

* Points on the plane are represented by two
euclidean coordinates

* ...0r 3 homogenous coordinates

3D object 2D object (plane)
Ximg = PXy Ximg = HXy
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What if object of interest is a
plane?

Homography

Ximg = HXy,

iy

* Homography maps
points on the plane to
pixels in the image




Fitting homographies

* How many parameters does a homography have?

* Given a single point on the plane and
corresponding image location, what does that tell
us?

Ximg = HXy
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Fitting homographies

* How many parameters does a homography have?

* Given a single point on the plane and
corresponding image location, what does that tell
us?
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* Convince yourself that this gives 2 linear equations!




Fitting homographies

* Homography has 9 parameters
* But can’t determine scale factor, so only 8: 4

points!
Ah=0st ||h|| =1

 Or because we will have noise:

min | A s.t [|h] = 1



Fitting homographies




Homographies for image
alignment

* A general mapping from one plane to another!

e Can also be used to align one photo of a plane to
another photo of the same plane

Image 1

Original plane



Homographies for image
alignment

* Can also be used to align one photo of a plane to
another photo of the same plane

".

http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/




Image Alignment Algorithm

Given images A and B

1. Compute image features for A and B

2. Match features between A and B

3. Compute homography between A and B
What could go wrong?



Fitting in general

e Fitting: find the parameters of a model that best fit
the data

* Other examples:
* |least squares linear regression



Least squares: linear regression




Linear regression
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Linear regression
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Robustness

Problem: Fit a line to these datapoints

Least squares fit
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* Given a hypothesized line

e Count the number of points that “agree” with the
line
e “Agree” = within a small distance of the line
* |.e., the inliers to that line

* For all possible lines, select the one with the largest
number of inliers



Counting inliers




Counting inliers

Inliers: 3



Counting inliers

Inliers: 20



How do we find the best line?

* Unlike least-squares, no simple closed-form
solution

* Hypothesize-and-test

* Try out many lines, keep the best one
* Which lines?



RANSAC (Random Sample C@sensus) 0
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Line fitting example “ ‘
O
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Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

lllustration by Savarese



RANSAC

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



RANSAC

Line fitting example

N, =6

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence




RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence




RANSAC

e |dea:

* All the inliers will agree with each other on the translation
vector; the (hopefully small) number of outliers will
(hopefully) disagree with each other

* RANSAC only has guarantees if there are < 50% outliers

* “All good matches are alike; every bad match is bad in its
own way.”

— Tolstoy via Alyosha Efros



Translations
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RAndom SAmple Consensus

Select one match at random, count inliers




RAndom SAmple Consensus

Select another match at random, count inliers




RAndom SAmple Consensus

Output the translation with the highest number of inliers




Final step: least squares fit
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Find average translation vector over all inliers




RANSAC

* Inlier threshold related to the amount of noise we
expect in inliers
e Often model noise as Gaussian with some standard
deviation (e.g., 3 pixels)
* Number of rounds related to the percentage of
outliers we expect, and the probability of success
we’d like to guarantee

* Suppose there are 20% outliers, and we want to find the
correct answer with 99% probability

* How many rounds do we need?



How many rounds?

* If we have to choose k samples each time
e with aninlier ratio p
* and we want the right answer with probability P

proportion of inliers p

95% 90% 80% 75% 70% 60% 50%

2 3 5 6 7 11 17
7 9 11 19 35
9 13 17 34 72
12 17 26 57 146
16 24 37 97 293
20 33 54 163 588
26 44 78 272 1177
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P=0.99

Source: M. Pollefeys



To ensure that the random sampling has a good chance of finding a true set of inliers, a
sufficient number of trials .S must be tried. Let p be the probability that any given correspon-
dence 1s valid and P be the total probability of success after S trials. The likelihood in one
trial that all & random samplefs are inliers is p*. Therefore, the likelihood that .S such trials
will all fail 1s

1—P=(1-pF>*° (6.29)
and the required minimum number of trials is
log(1 — P)
log(1 —pk)’

S = (6.30)

proportion of inliers p
95% 90% 80% 75% 70% 60% 50%
2 3 5 6 7 11 17
7 9 11 19 35
9 13 17 34 72
12 17 26 57 146
16 24 37 97 293
20 33 54 163 588
26 44 78 272 1177

P=0.99
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How big is k7

* For alignment, depends on the motion model
* Here, each sample is a correspondence (pair of matching

points)
similarity Q projective
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RANSAC pros and cons

® Pros
* Simple and general
* Applicable to many different problems
e Often works well in practice

e Cons
* Parameters to tune
* Sometimes too many iterations are required
e Can fail for extremely low inlier ratios



RANSAC

* An example of a “voting”-based fitting scheme

* Each hypothesis gets voted on by each data point,
best hypothesis wins

* There are many other types of voting schemes
e E.g., Hough transforms...



Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High
Energy Accelerators and Instrumentation, 1959

Given a set of points, find the curve or line that
explains the data points best

Hough space

y=mx+b

Slide from S. Savarese



Hough Transform: Outline

1. Create a grid of parameter values

2. Each point votes for a set of parameters,
incrementing those values in grid

3. Find maximum or local maxima in grid



Hough transform

Slide from S. Savarese



d = xcost + ysinb



Hough transform




