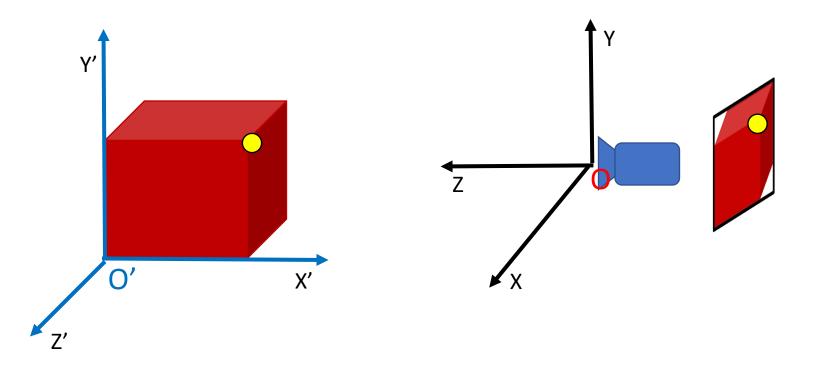
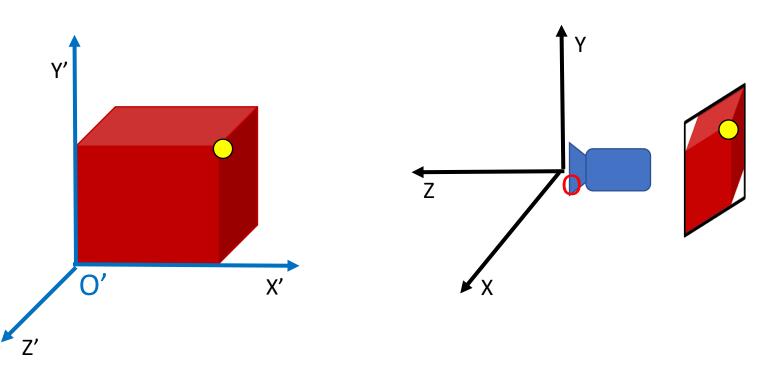
A special case of calibration

Camera calibration



Camera calibration = pose estimation

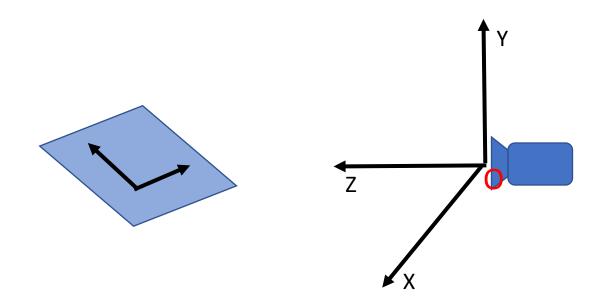
- Estimating where camera is relative to object in world
- = Estimating where object is relative to camera



What if object of interest is plane?

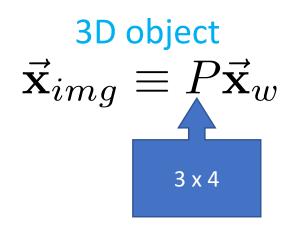
• Not that uncommon....

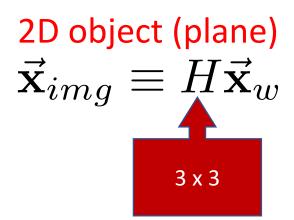
What if object of interest is plane?



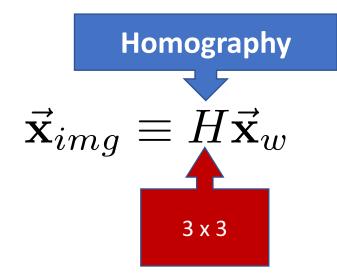
What if object of interest is a plane?

- Imagine that plane is equipped with two axes.
- Points on the plane are represented by two euclidean coordinates
- ... Or 3 homogenous coordinates





What if object of interest is a plane?



 Homography maps points on the plane to pixels in the image

- How many parameters does a homography have?
- Given a single point on the plane and corresponding image location, what does that tell us?

$$\vec{\mathbf{x}}_{img} \equiv H\vec{\mathbf{x}}_w$$
$$\begin{bmatrix} \lambda x \\ \lambda y \\ \lambda \end{bmatrix} = \begin{bmatrix} H_{11} & H_{12} & H_{13} \\ H_{21} & H_{22} & H_{23} \\ H_{31} & H_{32} & H_{33} \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ 1 \end{bmatrix}$$

- How many parameters does a homography have?
- Given a single point on the plane and corresponding image location, what does that tell us?

$$\begin{bmatrix} \lambda x \\ \lambda y \\ \lambda \end{bmatrix} = \begin{bmatrix} H_{11} & H_{12} & H_{13} \\ H_{21} & H_{22} & H_{23} \\ H_{31} & H_{32} & H_{33} \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ 1 \end{bmatrix}$$

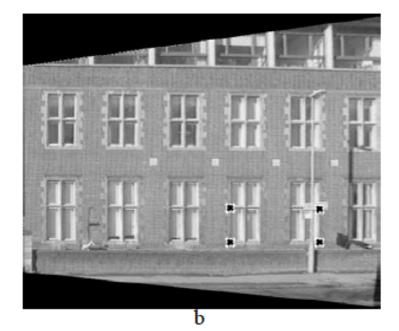
Convince yourself that this gives 2 linear equations!

- Homography has 9 parameters
- But can't determine scale factor, so only 8: 4 points!

$$A\mathbf{h} = 0 \text{ s.t } \|\mathbf{h}\| = 1$$

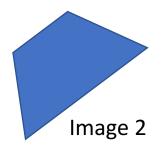
• Or because we will have noise:

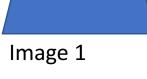
$$\min_{\mathbf{h}} \|A\mathbf{h}\|^2 \text{ s.t } \|\mathbf{h}\| = 1$$



Homographies for image alignment

- A general mapping from one plane to another!
- Can also be used to align one photo of a plane to another photo of the same plane

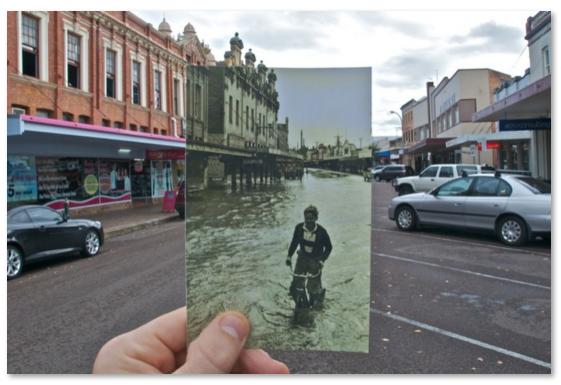




Original plane

Homographies for image alignment

 Can also be used to align one photo of a plane to another photo of the same plane



http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/

Image Alignment Algorithm

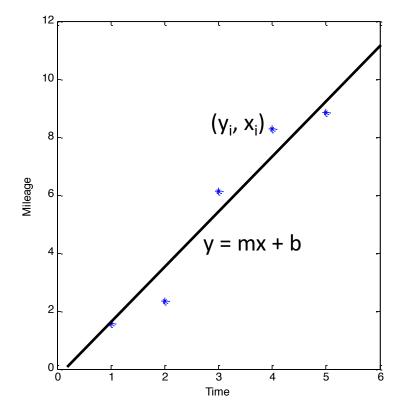
Given images A and B

- 1. Compute image features for A and B
- 2. Match features between A and B
- 3. Compute homography between A and B What could go wrong?

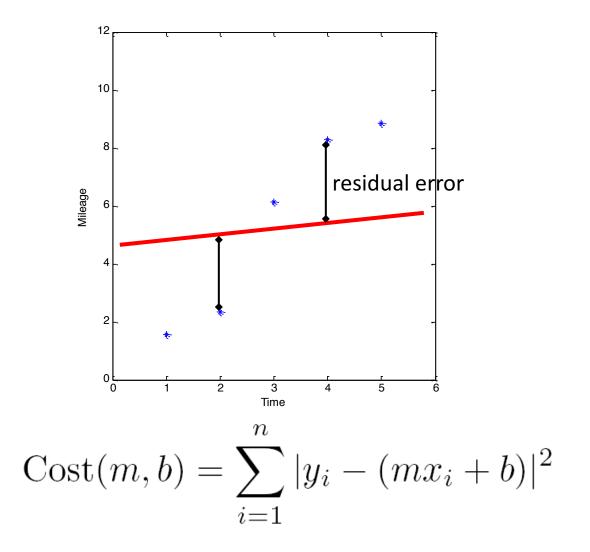
Fitting in general

- Fitting: find the parameters of a model that best fit the data
- Other examples:
 - least squares linear regression

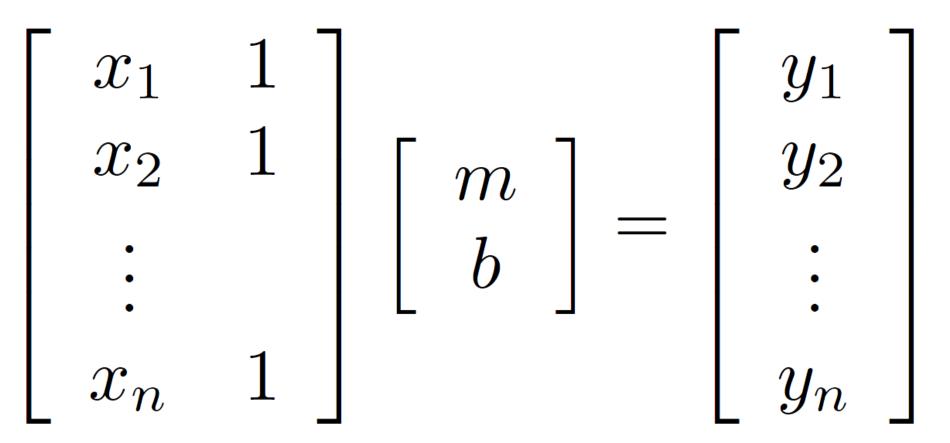
Least squares: linear regression

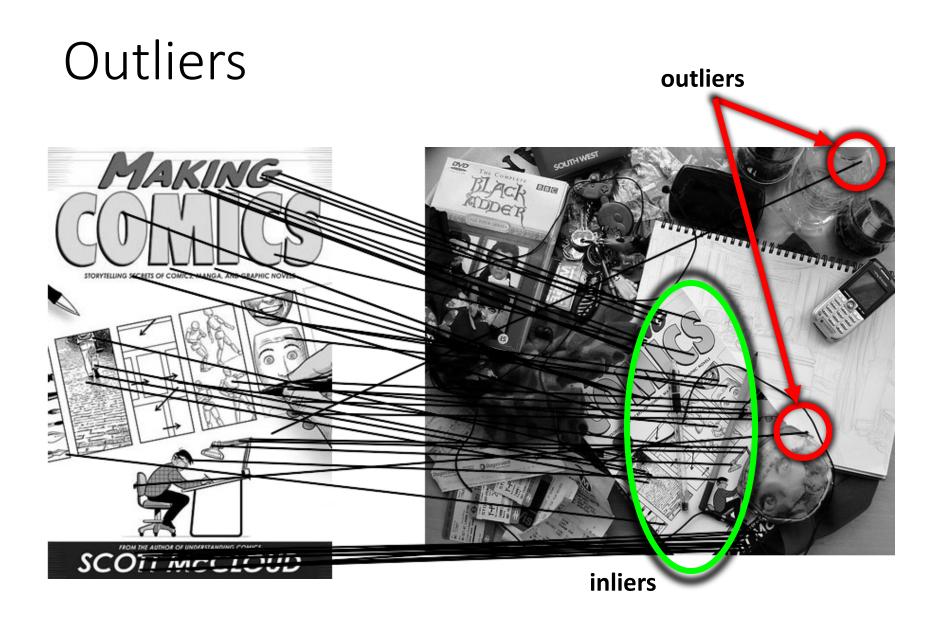


Linear regression

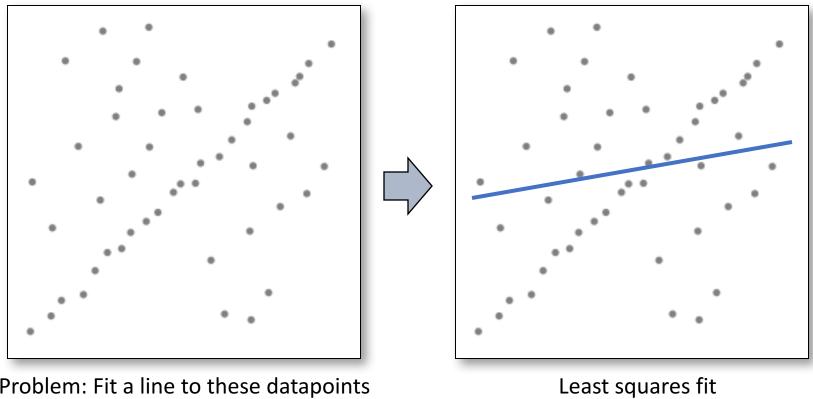


Linear regression





Robustness

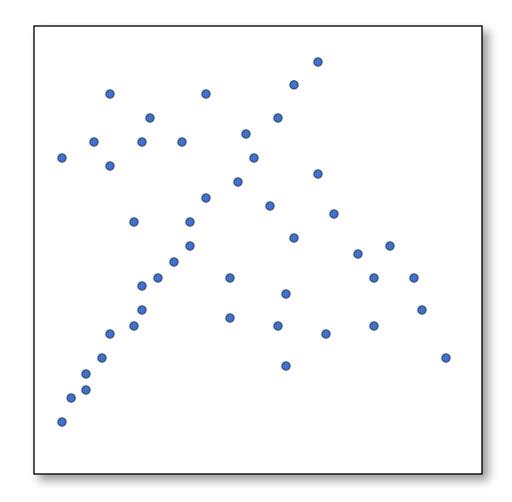


Problem: Fit a line to these datapoints

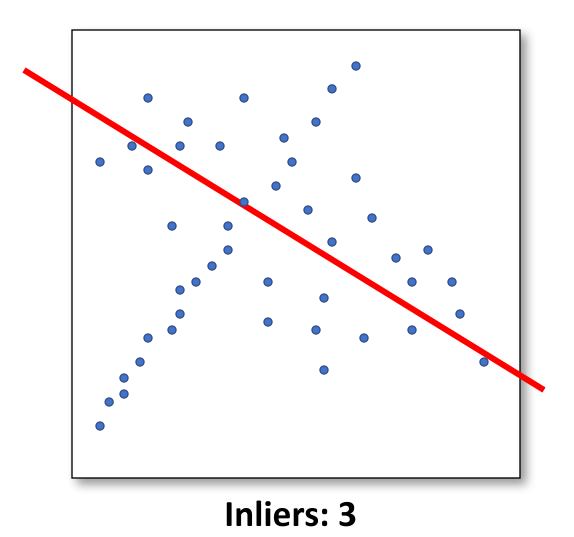
Idea

- Given a hypothesized line
- Count the number of points that "agree" with the line
 - "Agree" = within a small distance of the line
 - I.e., the **inliers** to that line
- For all possible lines, select the one with the largest number of inliers

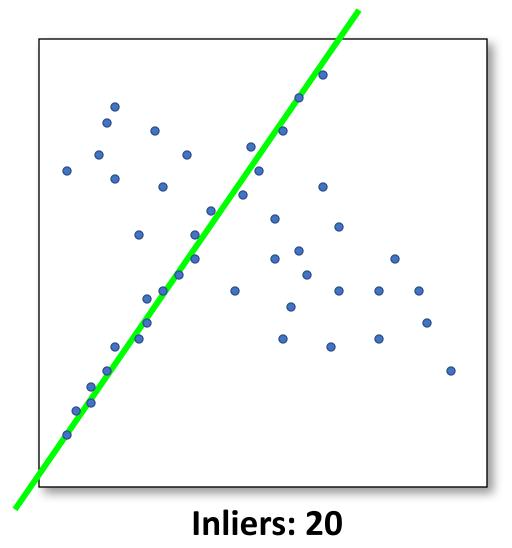
Counting inliers



Counting inliers

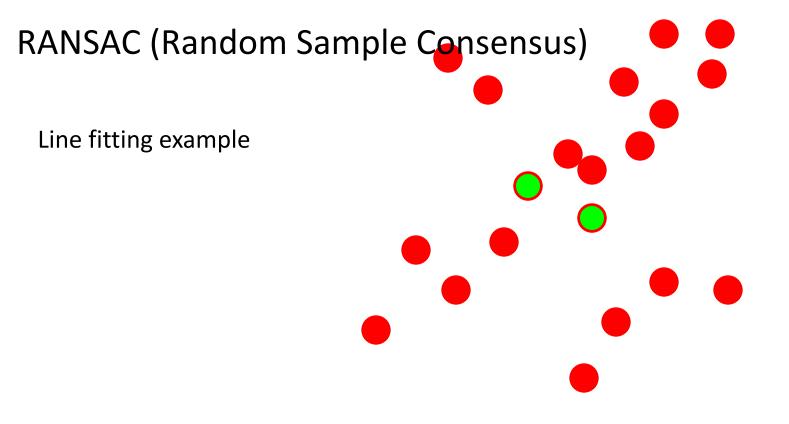


Counting inliers



How do we find the best line?

- Unlike least-squares, no simple closed-form solution
- Hypothesize-and-test
 - Try out many lines, keep the best one
 - Which lines?

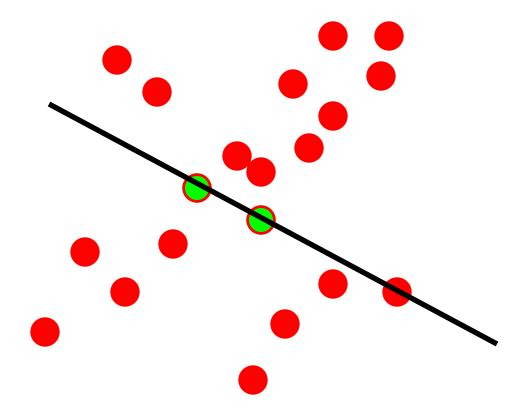


Algorithm:

- 1. Sample (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

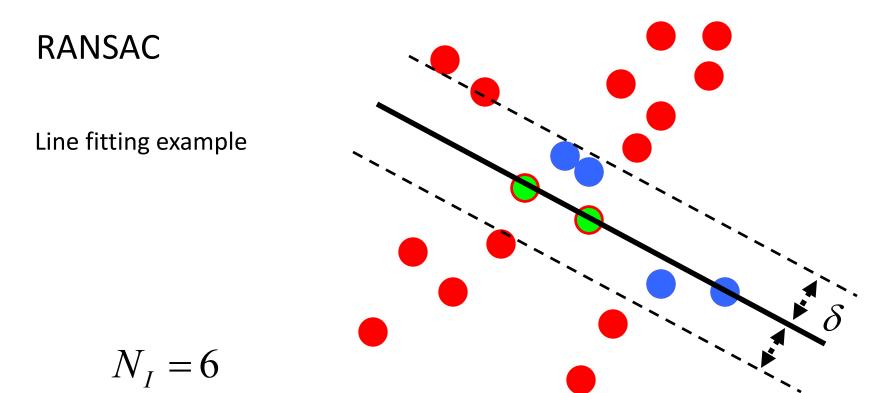
RANSAC

Line fitting example



Algorithm:

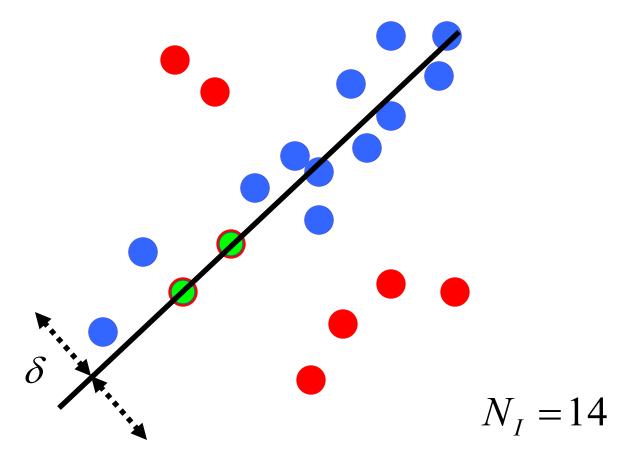
- 1. Sample (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model



Algorithm:

- 1. Sample (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

RANSAC



Algorithm:

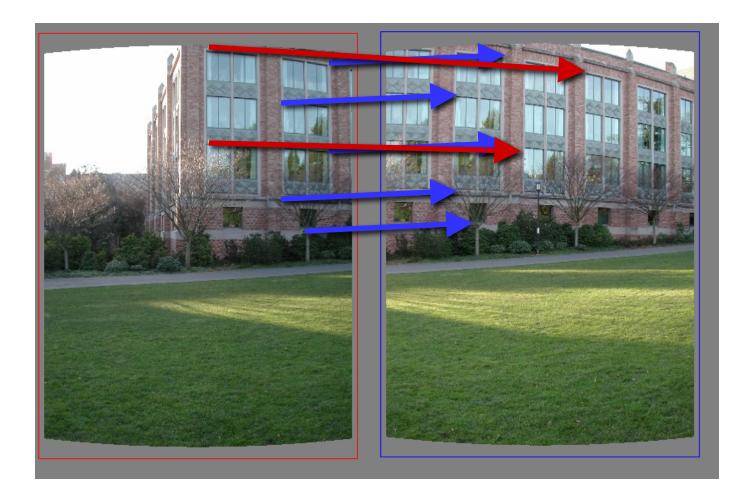
- 1. Sample (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

RANSAC

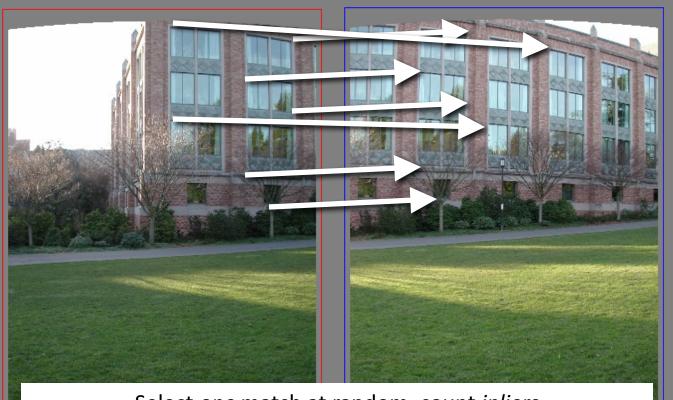
- Idea:
 - All the inliers will agree with each other on the translation vector; the (hopefully small) number of outliers will (hopefully) disagree with each other
 - RANSAC only has guarantees if there are < 50% outliers
 - "All good matches are alike; every bad match is bad in its own way."

– Tolstoy via Alyosha Efros

Translations

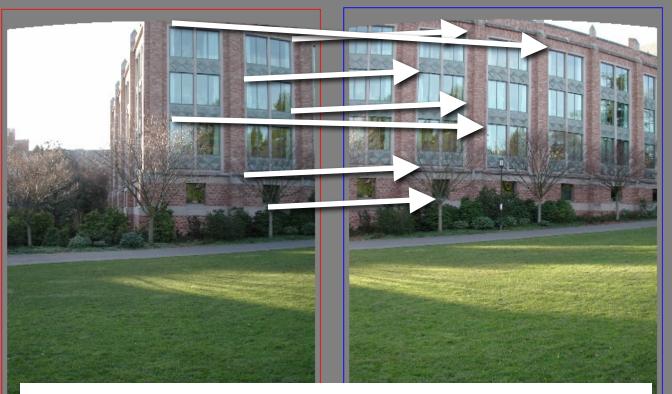


<u>RA</u>ndom <u>SA</u>mple <u>C</u>onsensus



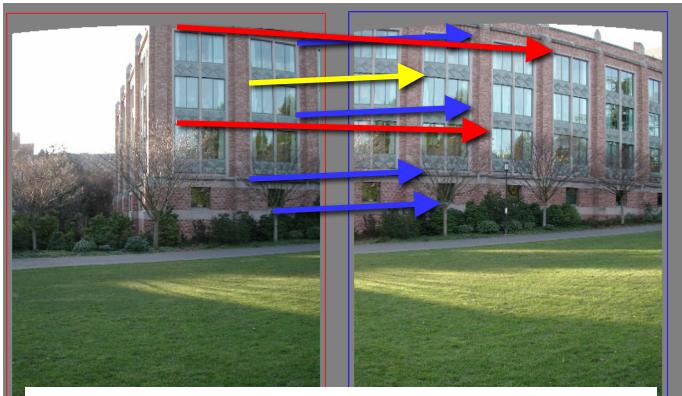
Select one match at random, count inliers

<u>RA</u>ndom <u>SA</u>mple <u>C</u>onsensus



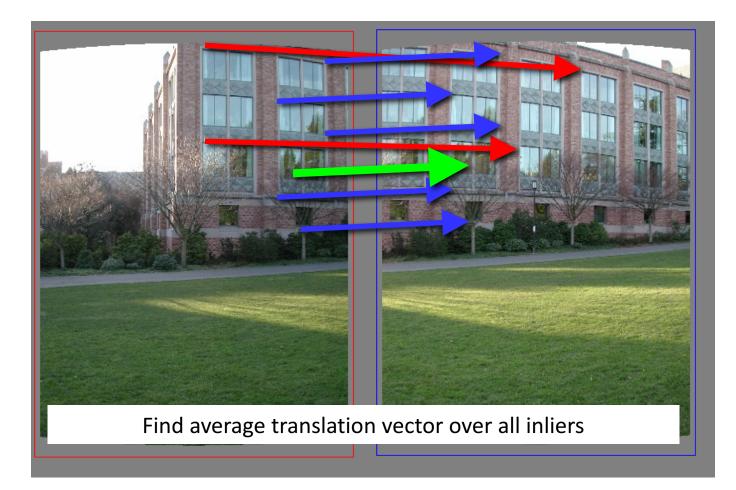
Select another match at random, count inliers

<u>RAndom SAmple Consensus</u>



Output the translation with the highest number of inliers

Final step: least squares fit



RANSAC

- Inlier threshold related to the amount of noise we expect in inliers
 - Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)
- Number of rounds related to the percentage of outliers we expect, and the probability of success we'd like to guarantee
 - Suppose there are 20% outliers, and we want to find the correct answer with 99% probability
 - How many rounds do we need?

How many rounds?

- If we have to choose k samples each time
 - with an inlier ratio p
 - and we want the right answer with probability P

	proportion of inliers <i>p</i>							
k	95%	90%	80%	75%	70%	60%	50%	
2	2	3	5	6	7	11	17	
3	3	4	7	9	11	19	35	
4	3	5	9	13	17	34	72	
5	4	6	12	17	26	57	146	
6	4	7	16	24	37	97	293	
7	4	8	20	33	54	163	588	
8	5	9	26	44	78	272	1177	

P = 0.99

To ensure that the random sampling has a good chance of finding a true set of inliers, a sufficient number of trials S must be tried. Let p be the probability that any given correspondence is valid and P be the total probability of success after S trials. The likelihood in one trial that all k random samples are inliers is p^k . Therefore, the likelihood that S such trials will all fail is

$$1 - P = (1 - p^k)^S ag{6.29}$$

and the required minimum number of trials is

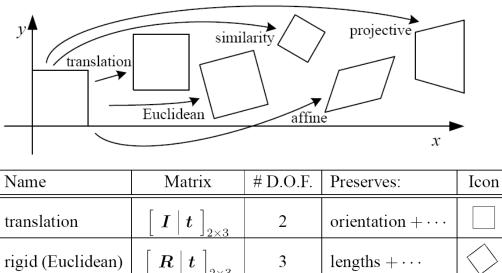
$$S = \frac{\log(1-P)}{\log(1-p^k)}.$$
(6.30)

	proportion of inliers <i>p</i>							
k	95%	90%	80%	75%	70%	60%	50%	
2	2	3	5	6	7	11	17	
3	3	4	7	9	11	19	35	
4	3	5	9	13	17	34	72	
5	4	6	12	17	26	57	146	
6	4	7	16	24	37	97	293	
7	4	8	20	33	54	163	588	
8	5	9	26	44	78	272	1177	

P = 0.99

How big is k?

- For alignment, depends on the motion model
 - Here, each sample is a correspondence (pair of matching points)



rigid (Euclidean)	$igg[egin{array}{c c} R & t \end{array} igg]_{2 imes 3}$	3	lengths $+\cdots$	\bigcirc
similarity	$\left[\left s \boldsymbol{R} \right \boldsymbol{t} ight]_{2 imes 3}$	4	angles $+ \cdots$	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+ \cdots$	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

RANSAC pros and cons

• Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice
- Cons
 - Parameters to tune
 - Sometimes too many iterations are required
 - Can fail for extremely low inlier ratios

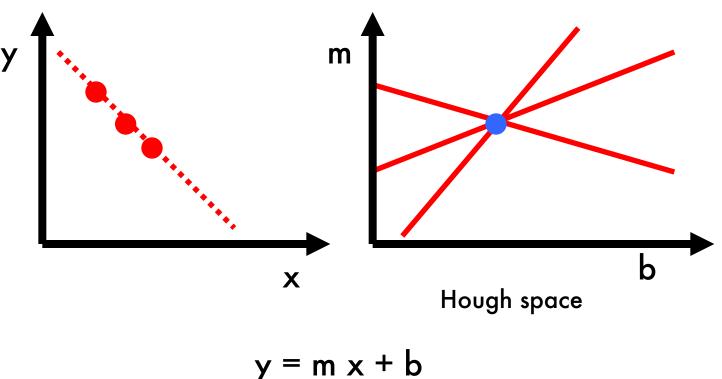
RANSAC

- An example of a "voting"-based fitting scheme
- Each hypothesis gets voted on by each data point, best hypothesis wins
- There are many other types of voting schemes
 - E.g., Hough transforms...

Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Given a set of points, find the curve or line that explains the data points best

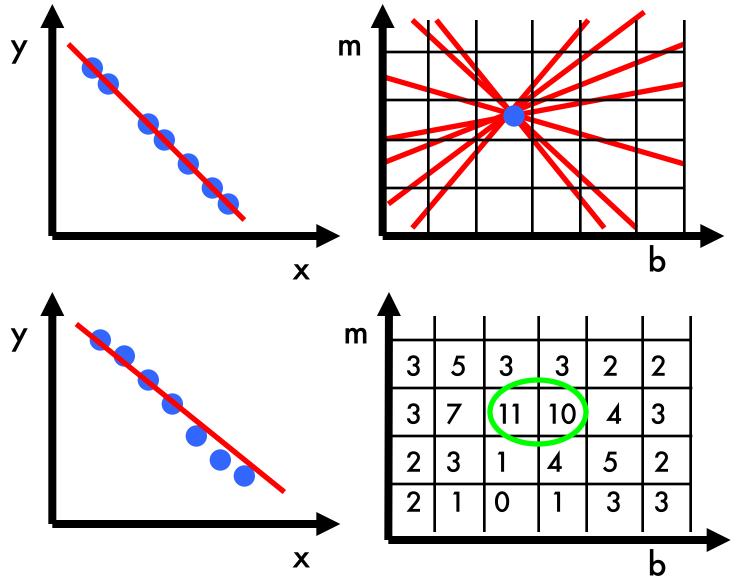


Slide from S. Savarese

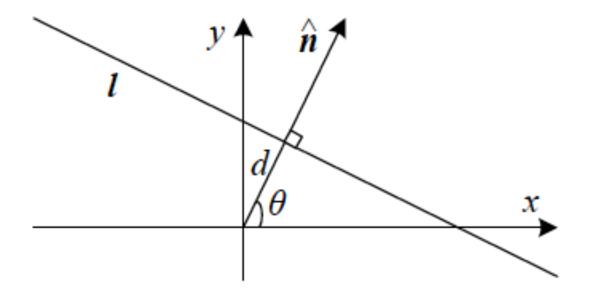
Hough Transform: Outline

- 1. Create a grid of parameter values
- 2. Each point votes for a set of parameters, incrementing those values in grid
- 3. Find maximum or local maxima in grid

Hough transform



Slide from S. Savarese



$d = x cos\theta + y sin\theta$

Hough transform

