Camera calibration Triangulation

Perspective projection in homogenous coordinates

$$
\begin{gathered}
\overrightarrow{\mathbf{x}}_{i m g} \equiv\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right]\left[\begin{array}{ll}
R & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
\overrightarrow{\mathbf{x}}_{i m g} \equiv\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}
\end{gathered}
$$

Matrix transformations in 2D

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}
$$

$$
\begin{gathered}
K=\begin{array}{ccc}
{\left[\begin{array}{ccc}
1 & 0 & t_{u} \\
0 & 1 & t_{v} \\
0 & 0 & 1
\end{array}\right]} & K=\left[\begin{array}{ccc}
s_{x} & 0 & t_{u} \\
0 & s_{y} & t_{v} \\
0 & 0 & 1
\end{array}\right] \\
\text { Translation }
\end{array} \underbrace{K=\left[\begin{array}{ccc}
s_{x} & \alpha & t_{u} \\
0 & s_{y} & t_{v} \\
0 & 0 & 1
\end{array}\right]}_{\begin{array}{c}
\text { Scaling of Image xand y } \\
\text { (conversion from "meters" } \\
\text { to "pixels") }
\end{array}} \begin{array}{c}
\text { Added skew if image x and y } \\
\text { axes are not perpendicular }
\end{array}
\end{gathered}
$$

Final perspective projection

Final perspective projection

$$
\begin{aligned}
\overrightarrow{\mathbf{x}}_{i m g} \equiv & K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
& \\
& \text { Cemera parameters }
\end{aligned}
$$

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w}
$$

Camera calibration

- Goal: find the parameters of the camera

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}
$$

- Why?
- Tells you where the camera is relative to the world/particular objects
- Equivalently, tells you where objects are relative to the camera
- Can allow you to "render" new objects into the scene

Camera calibration

Camera calibration

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w}
$$

- Suppose we know that (X, Y, Z) in the world projects to (x, y) in the image.
- How many equations does this provide?

$$
\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \equiv P\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right] \begin{aligned}
& \text { Need to convert equivalence } \\
& \text { into equality. }
\end{aligned}
$$

Camera calibration

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w}
$$

- Suppose we know that (X, Y, Z) in the world projects to (x, y) in the image.
- How many equations does this provide?

Camera calibration

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w}
$$

- Suppose we know that (X, Y, Z) in the world projects to (x, y) in the image.
- How many equations does this provide?

$$
\left[\begin{array}{c}
\lambda x \\
\lambda y \\
\lambda
\end{array}\right]=\left[\begin{array}{llll}
P_{11} & P_{12} & P_{13} & P_{14} \\
P_{21} & P_{22} & P_{23} & P_{24} \\
P_{31} & P_{32} & P_{33} & P_{34}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

Camera calibration

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w}
$$

- Suppose we know that ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) in the world projects to (x, y) in the image.
- How many equations does this provide?

$$
\begin{aligned}
\lambda x & =P_{11} X+P_{12} Y+P_{13} Z+P_{14} \\
\lambda y & =P_{21} X+P_{22} Y+P_{23} Z+P_{24} \\
\lambda & =P_{31} X+P_{32} Y+P_{33} Z+P_{34}
\end{aligned}
$$

Camera calibration

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w}
$$

- Suppose we know that (X, Y, Z) in the world projects to (x, y) in the image.
- How many equations does this provide?
$\left(P_{31} X+P_{32} Y+P_{33} Z+P_{34}\right) x=P_{11} X+P_{12} Y+P_{13} Z+P_{14}$ $\left(P_{31} X+P_{32} Y+P_{33} Z+P_{34}\right) y=P_{21} X+P_{22} Y+P_{23} Z+P_{24}$
- 2 equations!
- Are the equations linear in the parameters?
- How many equations do we need?

Camera calibration

$\left(P_{31} X+P_{32} Y+P_{33} Z+P_{34}\right) x=P_{11} X+P_{12} Y+P_{13} Z+P_{14}$

$$
X x P_{31}+Y x P_{32}+Z x P_{33}+x P_{34}-X P_{11}-Y P_{12}-Z P_{13}-P_{14}=0
$$

- In matrix vector form: Ap = 0
- 6 points give 12 equations, 12 variables to solve for
- But can only solve upto scale

Camera calibration

- In matrix vector form: $\mathrm{Ap}=0$
- We want non-trivial solutions
- If p is a solution, $\alpha \mathrm{p}$ is a solution too
- Let's just search for a solution with unit norm

$$
\begin{aligned}
& A \mathbf{p}=0 \\
& \text { s.t } \\
& \|\mathbf{p}\|=1
\end{aligned}
$$

- How do you solve this?

Camera calibration

- In matrix vector form: $A p=0$
- We want non-trivial solutions
- If p is a solution, αp is a solution too
- Let's just search for a solution with unit norm

$$
\begin{aligned}
& A \mathbf{p}=0 \\
& \substack{\text { s.t } \\
\|\mathbf{p}\| \\
=1}
\end{aligned}
$$

Camera calibration

- What happens if there are more than 6 points?
- What if there is noise in the point locations?

$$
\begin{aligned}
& \min _{\mathbf{p}}\|A \mathbf{p}\|^{2} \\
& \underset{A \mathbf{p}}{ }=0-0 \\
& \text { s.t. } \\
& \|\mathbf{p}\|=1
\end{aligned}
$$

Camera calibration

- What happens if there are more than 6 points?
- What if there is noise in the point locations?

$$
\begin{gathered}
\min _{\mathbf{p}} \mathbf{p}^{T} A^{T} A \mathbf{p} \\
A \mathbf{p}=0 \\
\text { s.t. } \\
\|\mathbf{p}\|=1
\end{gathered}
$$

- Look at eigenvector of $\mathrm{A}^{\top} \mathrm{A}$ with the smallest eigenvalue!

Camera calibration

- >=6 points with known 3D coordinates + known image coordinates

$$
X x P_{31}+Y x P_{32}+Z x P_{33}+x P_{34}-X P_{11}-Y P_{12}-Z P_{13}-P_{14}=0
$$

- In matrix vector form: want $A p=0$
- Resilience to noise:

$$
\begin{gathered}
\min _{\mathbf{p}} \mathbf{p}^{T} A^{T} A \mathbf{p} \\
\|\mathbf{p}\|=1
\end{gathered}
$$

- Look at eigenvector of $A^{\top} A$ with the smallest eigenvalue!

Camera calibration

- We need 6 world points for which we know image locations
- Would any 6 points work?
- What if all 6 points are the same?
- Need at least 6 non-coplanar points!

Camera calibration

Camera calibration

$$
\begin{aligned}
& \overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w} \\
& \overrightarrow{\mathbf{x}}_{i m g} \equiv K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}
\end{aligned}
$$

- How do we get K, R and t from P ?
- Need to make some assumptions about K
- What if K is identity?

Camera calibration

$$
\begin{gathered}
\overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w} \\
\overrightarrow{\mathbf{x}}_{i m g} \equiv K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}
\end{gathered}
$$

- How do we get K, R and t from P ?
- Need to make some assumptions about K
- What if K is upper triangular?

$$
K=\left[\begin{array}{ccc}
s_{x} & \alpha & t_{u} \\
0 & s_{y} & t_{v} \\
0 & 0 & 1
\end{array}\right]
$$

Added skew if image x and y axes are not perpendicular

Camera calibration

- How do we get K, R and t from P?
- Need to make some assumptions about K
- What if K is upper triangular?
- $P=K[R t]$

$$
K=\left[\begin{array}{ccc}
s_{x} & \alpha & t_{u} \\
0 & s_{y} & t_{v} \\
0 & 0 & 1
\end{array}\right]
$$

- First 3×3 matrix of P is KR
- "RQ" decomposition: decomposes an $\mathrm{n} \times \mathrm{n}$ matrix into product of upper triangular and rotation matrix

Camera calibration

- How do we get K, R and t from P ?
- Need to make some assumptions about K
- What if K is upper triangular?
- $P=K[R t]$
- First 3×3 matrix of P is KR
- "RQ" decomposition: decomposes an $n \times n$ matrix into product of upper triangular and rotation matrix
- $\mathrm{t}=\mathrm{K}^{-1} \mathrm{P}[:, 2] \leftarrow$ last column of P

Camera calibration and pose estimation

Triangulation

- Suppose we have two cameras
- Calibrated: parameters known
- And a pair of corresponding pixels
- Find 3D location of point!

Triangulation

- Suppose we have two cameras
- Calibrated: parameters known
- And a pair of corresponding pixels
- Find 3D location of point!

$P^{(2)}$

Triangulation

$$
\begin{aligned}
& {\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right] \longleftarrow \overrightarrow{\mathbf{x}}_{i m g}^{(1)} \equiv P^{(1)} \overrightarrow{\mathbf{x}}_{w}} \\
& {\left[\begin{array}{c}
x_{2} \\
y_{2} \\
1
\end{array}\right] \quad\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]}
\end{aligned}
$$

Triangulation

$$
\begin{gathered}
\overrightarrow{\mathbf{x}}_{i m g}^{(1)} \equiv P^{(1)} \overrightarrow{\mathbf{x}}_{w} \\
\lambda x_{1}=P_{11}^{(1)} X+P_{12}^{(1)} Y+P_{13}^{(1)} Z+P_{14}^{(1)} \\
\lambda y_{1}=P_{21}^{(1)} X+P_{22}^{(1)} Y+P_{23}^{(1)} Z+P_{24}^{(1)} \\
\lambda=P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)} \\
\left(P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)}\right) x_{1}=P_{11}^{(1)} X+P_{12}^{(1)} Y+P_{13}^{(1)} Z+P_{14}^{(1)} \\
X\left(P_{31}^{(1)} x_{1}-P_{11}^{(1)}\right)+Y\left(P_{32}^{(1)} x_{1}-P_{12}^{(1)}\right)+Z\left(P_{33}^{(1)} x_{1}-P_{13}^{(1)}\right)+\left(P_{34}^{(1)} x_{1}-P_{14}^{(1)}\right)=0
\end{gathered}
$$

Triangulation

$$
\overrightarrow{\mathbf{x}}_{i m g}^{(1)} \equiv P^{(1)} \overrightarrow{\mathbf{x}}_{w}
$$

$$
\begin{aligned}
& X\left(P_{31}^{(1)} x_{1}-P_{11}^{(1)}\right)+Y\left(P_{32}^{(1)} x_{1}-P_{12}^{(1)}\right)+Z\left(P_{33}^{(1)} x_{1}-P_{13}^{(1)}\right)+\left(P_{34}^{(1)} x_{1}-P_{14}^{(1)}\right)=0 \\
& X\left(P_{31}^{(1)} y_{1}-P_{21}^{(1)}\right)+Y\left(P_{32}^{(1)} y_{1}-P_{22}^{(1)}\right)+Z\left(P_{33}^{(1)} y_{1}-P_{23}^{(1)}\right)+\left(P_{34}^{(1)} y_{1}-P_{24}^{(1)}\right)=0
\end{aligned}
$$

- 1 image gives 2 equations
- Need 2 images!
- Solve linear equations to get 3D point location

Linear vs non-linear optimization

$$
\begin{aligned}
\lambda x_{1} & =P_{11}^{(1)} X+P_{12}^{(1)} Y+P_{13}^{(1)} Z+P_{14}^{(1)} \\
\lambda y_{1} & =P_{21}^{(1)} X+P_{22}^{(1)} Y+P_{23}^{(1)} Z+P_{24}^{(1)} \\
\lambda & =P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)}
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=\frac{P_{11}^{(1)} X+P_{12}^{(1)} Y+P_{13}^{(1)} Z+P_{14}^{(1)}}{P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)}} \\
& y_{1}=\frac{P_{21}^{(1)} X+P_{22}^{(1)} Y+P_{23}^{(1)} Z+P_{24}^{(1)}}{P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)}}
\end{aligned}
$$

Linear vs non-linear optimization

$$
\begin{aligned}
& x_{1}=\frac{P_{11}^{(1)} X+P_{12}^{(1)} Y+P_{13}^{(1)} Z+P_{14}^{(1)}}{P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)}} \\
& y_{1}=\frac{P_{21}^{(1)} X+P_{22}^{(1)} Y+P_{23}^{(1)} Z+P_{24}^{(1)}}{P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)}}
\end{aligned}
$$

$$
\begin{array}{|l}
\left(x_{1}-\frac{P_{11}^{(1)} X+P_{12}^{(1)} Y+P_{13}^{(1)} Z+P_{14}^{(1)}}{P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)}}\right)^{2} \\
+\left(y_{1}-\frac{P_{21}^{(1)} X+P_{22}^{(1)} Y+P_{23}^{(1)} Z+P_{24}^{(1)}}{P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)}}\right)^{2}
\end{array}
$$

Reprojection error

Linear vs non-linear optimization

$$
\begin{array}{|l|}
\hline\left(x_{1}-\frac{P_{11}^{(1)} X+P_{12}^{(1)} Y+P_{13}^{(1)} Z+P_{14}^{(1)}}{P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)}}\right)^{2} \\
+\left(y_{1}-\frac{P_{21}^{(1)} X+P_{22}^{(1)} Y+P_{23}^{(1)} Z+P_{24}^{(1)}}{P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)}}\right)^{2} \\
\hline \hline
\end{array}
$$

Reprojection error

- Reprojection error is the squared error between the true image coordinates of a point and the projected coordinates of hypothesized 3D point
- Actual error we care about
- Minimize total sum of reprojection error across all images
- Non-linear optimization

