
Camera	calibration
Triangulation



Perspective	projection	in	
homogenous	coordinates

~ximg ⌘
⇥
I 0

⇤ R t
0T 1

�
~xw

~ximg ⌘
⇥
R t

⇤
~xw



Matrix	transformations	in	2D

K =

2

4
1 0 tu
0 1 tv
0 0 1

3

5

Translation

K =

2

4
sx 0 tu
0 sy tv
0 0 1

3

5

Scaling	of	Image	x	and	y	
(conversion	from	“meters”	

to	“pixels”)

K =

2

4
sx ↵ tu
0 sy tv
0 0 1

3

5

Added	skew	if	image	x	and	y	
axes	are	not	perpendicular

~ximg ⌘ K
⇥
R t

⇤
~xw



Final	perspective	projection

~ximg ⌘ K
⇥
R t

⇤
~xw

~ximg ⌘ P~xw

Camera	intrinsics:	
how	your	camera	
handles	pixel.	
Changes	if	you	
change	your	camera	

Camera	extrinsics:	where	your	camera	is	relative	
to	the	world.	Changes	if	you	move	the	camera



Final	perspective	projection

~ximg ⌘ K
⇥
R t

⇤
~xw

~ximg ⌘ P~xw

Camera	parameters



Camera	calibration

• Goal:	find	the	parameters	of	the	camera

• Why?
• Tells	you	where	the	camera	is	relative	to	the	
world/particular	objects
• Equivalently,	tells	you	where	objects	are	relative	to	the	
camera
• Can	allow	you	to	”render”	new	objects	into	the	scene

~ximg ⌘ K
⇥
R t

⇤
~xw



Camera	calibration

Y

X

Z O

X’

Y’

Z’

O’



Camera	calibration

• Suppose	we	know	that	(X,Y,Z)	in	the	world	projects	
to	(x,y)	in	the	image.
• How	many	equations	does	this	provide?

~ximg ⌘ P~xw

2

4
x
y
1

3

5 ⌘ P

2

664

X
Y
Z
1

3

775
Need	to	convert	equivalence	
into	equality.



Camera	calibration

• Suppose	we	know	that	(X,Y,Z)	in	the	world	projects	
to	(x,y)	in	the	image.
• How	many	equations	does	this	provide?

~ximg ⌘ P~xw

2

4
�x
�y
�

3

5 = P

2

664

X
Y
Z
1

3

775
Note:	𝜆 is	
unknown



Camera	calibration

• Suppose	we	know	that	(X,Y,Z)	in	the	world	projects	
to	(x,y)	in	the	image.
• How	many	equations	does	this	provide?

~ximg ⌘ P~xw

2

4
�x
�y
�

3

5 =

2

4
P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

3

5

2

664

X
Y
Z
1

3

775



Camera	calibration

• Suppose	we	know	that	(X,Y,Z)	in	the	world	projects	
to	(x,y)	in	the	image.
• How	many	equations	does	this	provide?

~ximg ⌘ P~xw

�x = P11X + P12Y + P13Z + P14

�y = P21X + P22Y + P23Z + P24

� = P31X + P32Y + P33Z + P34



Camera	calibration

• Suppose	we	know	that	(X,Y,Z)	in	the	world	projects	
to	(x,y)	in	the	image.
• How	many	equations	does	this	provide?

• 2	equations!
• Are	the	equations	linear	in	the	parameters?
• How	many	equations	do	we	need?

~ximg ⌘ P~xw

(P31X + P32Y + P33Z + P34)x = P11X + P12Y + P13Z + P14

(P31X + P32Y + P33Z + P34)y = P21X + P22Y + P23Z + P24



Camera	calibration

• In	matrix	vector	form:	Ap =	0
• 6	points	give	12	equations,	12	variables	to	solve	for
• But	can	only	solve	upto scale

(P31X + P32Y + P33Z + P34)x = P11X + P12Y + P13Z + P14

(P31X + P32Y + P33Z + P34)y = P21X + P22Y + P23Z + P24

XxP31 + Y xP32 + ZxP33 + xP34 �XP11 � Y P12 � ZP13 � P14 = 0



Camera	calibration

• In	matrix	vector	form:	Ap =	0
• We	want	non-trivial	solutions
• If	p	is	a	solution,	𝛼p	is	a	solution	too
• Let’s	just	search	for	a	solution	with	unit	norm

• How	do	you	solve	this?

Ap = 0

kpk = 1
s.t



Camera	calibration

• In	matrix	vector	form:	Ap =	0
• We	want	non-trivial	solutions
• If	p	is	a	solution,	𝛼p	is	a	solution	too
• Let’s	just	search	for	a	solution	with	unit	norm

Ap = 0

kpk = 1
s.t



Camera	calibration

• What	happens	if	there	are	more	than	6	points?
• What	if	there	is	noise	in	the	point	locations?

Ap = 0

kpk = 1
s.t

min
p

kApk2



Camera	calibration

• What	happens	if	there	are	more	than	6	points?
• What	if	there	is	noise	in	the	point	locations?

• Look	at	eigenvector	of	ATA	with	the	smallest	
eigenvalue!

Ap = 0

kpk = 1
s.t

min
p

pTATAp



Camera	calibration

• >=6	points	with	known	3D	coordinates	+	known	
image	coordinates

• In	matrix	vector	form:	want	Ap =	0
• Resilience	to	noise:	

• Look	at	eigenvector	of	ATA	with	the	smallest	
eigenvalue!

XxP31 + Y xP32 + ZxP33 + xP34 �XP11 � Y P12 � ZP13 � P14 = 0

kpk = 1
s.t

min
p

pTATAp



Camera	calibration

• We	need	6	world	points	for	which	we	know	image	
locations
• Would	any	6	points	work?
• What	if	all	6	points	are	the	same?

• Need	at	least	6	non-coplanar	points!



Camera	calibration

Y

X

Z O

X’

Y’

Z’

O’



Camera	calibration

• How	do	we	get	K,	R	and	t	from	P?
• Need	to	make	some	assumptions	about	K
• What	if	K	is	identity?

~ximg ⌘ K
⇥
R t

⇤
~xw

~ximg ⌘ P~xw



Camera	calibration

• How	do	we	get	K,	R	and	t	from	P?
• Need	to	make	some	assumptions	about	K
• What	if	K	is	upper	triangular?

~ximg ⌘ K
⇥
R t

⇤
~xw

~ximg ⌘ P~xw

K =

2

4
sx ↵ tu
0 sy tv
0 0 1

3

5

Added	skew	if	image	x	and	y	
axes	are	not	perpendicular



Camera	calibration
• How	do	we	get	K,	R	and	t	from	P?
• Need	to	make	some	assumptions	about	K
• What	if	K	is	upper	triangular?

• P	=	K	[	R		t]
• First	3	x	3	matrix	of	P	is	KR
• “RQ”	decomposition:	decomposes	an	n	x	n	matrix	
into	product	of	upper	triangular	and	rotation	
matrix

K =

2

4
sx ↵ tu
0 sy tv
0 0 1

3

5



Camera	calibration
• How	do	we	get	K,	R	and	t	from	P?
• Need	to	make	some	assumptions	about	K
• What	if	K	is	upper	triangular?
• P	=	K	[	R		t]
• First	3	x	3	matrix	of	P	is	KR
• “RQ”	decomposition:	decomposes	an	n	x	n	matrix	
into	product	of	upper	triangular	and	rotation	
matrix
• t	=	K-1P[:,2]	ß last	column	of	P



Camera	calibration	and	pose	
estimation



Triangulation

• Suppose	we	have	two	cameras
• Calibrated:	parameters	known

• And	a	pair	of	corresponding	pixels
• Find	3D	location	of	point!



Triangulation

• Suppose	we	have	two	cameras
• Calibrated:	parameters	known

• And	a	pair	of	corresponding	pixels
• Find	3D	location	of	point!

(x1,y1) (x2,y2)

P (1) P (2)



Triangulation

~x(2)
img ⌘ P (2)~xw

~x(1)
img ⌘ P (1)~xw

2

4
x1

y1
1

3

5

2

4
x2

y2
1

3

5

2

664

X
Y
Z
1

3

775



Triangulation

~x(1)
img ⌘ P (1)~xw

�x1 = P (1)
11 X + P (1)

12 Y + P (1)
13 Z + P (1)

14

�y1 = P (1)
21 X + P (1)

22 Y + P (1)
23 Z + P (1)

24

� = P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34

(P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34 )x1 = P (1)
11 X + P (1)

12 Y + P (1)
13 Z + P (1)

14

X(P (1)
31 x1 � P (1)

11 ) + Y (P (1)
32 x1 � P (1)

12 ) + Z(P (1)
33 x1 � P (1)

13 ) + (P (1)
34 x1 � P (1)

14 ) = 0



Triangulation

• 1	image	gives	2	equations
• Need	2	images!
• Solve	linear	equations	to	get	3D	point	location

~x(1)
img ⌘ P (1)~xw

X(P (1)
31 x1 � P (1)

11 ) + Y (P (1)
32 x1 � P (1)

12 ) + Z(P (1)
33 x1 � P (1)

13 ) + (P (1)
34 x1 � P (1)

14 ) = 0

X(P (1)
31 y1 � P (1)

21 ) + Y (P (1)
32 y1 � P (1)

22 ) + Z(P (1)
33 y1 � P (1)

23 ) + (P (1)
34 y1 � P (1)

24 ) = 0



Linear	vs	non-linear	optimization

�x1 = P (1)
11 X + P (1)

12 Y + P (1)
13 Z + P (1)

14

�y1 = P (1)
21 X + P (1)

22 Y + P (1)
23 Z + P (1)

24

� = P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34

x1 =
P (1)
11 X + P (1)

12 Y + P (1)
13 Z + P (1)

14

P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34

y1 =
P (1)
21 X + P (1)

22 Y + P (1)
23 Z + P (1)

24

P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34



Linear	vs	non-linear	optimization

x1 =
P (1)
11 X + P (1)

12 Y + P (1)
13 Z + P (1)

14

P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34

y1 =
P (1)
21 X + P (1)

22 Y + P (1)
23 Z + P (1)

24

P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34

(x1 �
P (1)
11 X + P (1)

12 Y + P (1)
13 Z + P (1)

14

P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34

)2

+(y1 �
P (1)
21 X + P (1)

22 Y + P (1)
23 Z + P (1)

24

P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34

)2

Reprojection error



Linear	vs	non-linear	optimization

• Reprojection error	is	the	squared	error	between	the	
true	image	coordinates	of	a	point	and	the	projected	
coordinates	of	hypothesized	3D	point
• Actual	error	we	care	about
• Minimize	total	sum	of	reprojection error	across	all	
images
• Non-linear	optimization	

(x1 �
P (1)
11 X + P (1)

12 Y + P (1)
13 Z + P (1)

14

P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34

)2

+(y1 �
P (1)
21 X + P (1)

22 Y + P (1)
23 Z + P (1)

24

P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34

)2

Reprojection error




