Perspective projection and Transformations

The pinhole camera

The pinhole camera

The pinhole camera

- Pinhole camera collapses ray $O P$ to point p
- Any point on ray OP $=0+$ $\lambda(P-O)=(\lambda X, \lambda Y, \lambda Z)$
- For this point to lie on $\mathrm{Z}=-1$ plane:

$$
\begin{aligned}
& \lambda^{*} Z=-1 \\
& \Rightarrow \lambda^{*}=\frac{-1}{Z}
\end{aligned}
$$

- Coordinates of point p :

$$
\left(\lambda^{*} X, \lambda^{*} Y, \lambda^{*} Z\right)=\left(\frac{-X}{Z}, \frac{-Y}{Z},-1\right)
$$

The projection equation

- A point $P=(X, Y, Z)$ in 3D projects to a point $p=(x, y)$ in the image

$$
\begin{aligned}
& x=\frac{-X}{Z} \\
& y=\frac{-Y}{Z}
\end{aligned}
$$

- But pinhole camera's image is inverted, invert it back!

$$
\begin{aligned}
& x=\frac{X}{Z} \\
& y=\frac{Y}{Z}
\end{aligned}
$$

Another derivation

A virtual image plane

- A pinhole camera produces an inverted image
- Imagine a "virtual image plane" in the front of the camera

The projection equation

$$
\begin{aligned}
& x=\frac{X}{Z} \\
& y=\frac{Y}{Z}
\end{aligned}
$$

Consequence 1: Farther away objects are smaller

Image of foot: $\left(\frac{X}{Z}, \frac{Y}{Z}\right)$
Image of head: $\left(\frac{X}{Z}, \frac{Y+h}{Z}\right)$

$$
\frac{Y+h}{Z}-\frac{Y}{Z}=\frac{h}{Z}
$$

Consequence 2: Parallel lines converge at a point

- Point on a line passing through point A with direction D:

$$
Q(\lambda)=A+\lambda D
$$

- Parallel lines have the same direction but pass through different points

$$
\begin{aligned}
& Q(\lambda)=A+\lambda D \\
& R(\lambda)=B+\lambda D
\end{aligned}
$$

Consequence 2: Parallel lines converge at a point

- Parallel lines have the same direction but pass through different points

$$
\begin{aligned}
& Q(\lambda)=A+\lambda D \\
& R(\lambda)=B+\lambda D
\end{aligned}
$$

- $A=\left(A_{X}, A_{Y}, A_{Z}\right)$
- $B=\left(B_{X}, B_{Y}, B_{Z}\right)$

- $D=\left(D_{X}, D_{Y}, D_{Z}\right)$

Consequence 2: Parallel lines converge at a point

- $Q(\lambda)=\left(A_{X}+\lambda D_{X}, A_{Y}+\lambda D_{Y}, A_{Z}+\lambda D_{Z}\right)$
- $R(\lambda)=\left(B_{X}+\lambda D_{X}, B_{Y}+\lambda D_{Y}, B_{Z}+\lambda D_{Z}\right)$
- $q(\lambda)=\left(\frac{A_{X}+\lambda D_{X}}{A_{Z}+\lambda D_{Z}}, \frac{A_{Y}+\lambda D_{Y}}{A_{Z}+\lambda D_{Z}}\right)$
- $r(\lambda)=\left(\frac{B_{X}+\lambda D_{X}}{B_{Z}+\lambda D_{Z}}, \frac{B_{Y}+\lambda D_{Y}}{B_{Z}+\lambda D_{Z}}\right)$
- Need to look at these points as Z goes to infinity
- Same as $\lambda \rightarrow \infty$

Consequence 2: Parallel lines converge at a point

- $q(\lambda)=\left(\frac{A_{X}+\lambda D_{X}}{A_{Z}+\lambda D_{Z}}, \frac{A_{Y}+\lambda D_{Y}}{A_{Z}+\lambda D_{Z}}\right)$
- $r(\lambda)=\left(\frac{B_{X}+\lambda D_{X}}{B_{Z}+\lambda D_{Z}}, \frac{B_{Y}+\lambda D_{Y}}{B_{Z}+\lambda D_{Z}}\right)$

$$
\lim _{\lambda \rightarrow \infty} \frac{A_{X}+\lambda D_{X}}{A_{Z}+\lambda D_{Z}}=\lim _{\lambda \rightarrow \infty} \frac{\frac{A_{X}}{\lambda}+D_{X}}{\frac{A_{Z}}{\lambda}+D_{Z}}=\frac{D_{X}}{D_{Z}}
$$

$\lim _{\lambda \rightarrow \infty} q(\lambda)=\left(\frac{D_{X}}{D_{Z}}, \frac{D_{Y}}{D_{Z}}\right)$

$$
\lim _{\lambda \rightarrow \infty} r(\lambda)=\left(\frac{D_{X}}{D_{Z}}, \frac{D_{Y}}{D_{Z}}\right)
$$

Consequence 2: Parallel lines converge at a point

- Parallel lines have the same direction but pass through different points

$$
\begin{aligned}
& Q(\lambda)=A+\lambda D \\
& R(\lambda)=B+\lambda D
\end{aligned}
$$

- Parallel lines converge at the same point $\left(\frac{D_{X}}{D_{Z}}, \frac{D_{Y}}{D_{Z}}\right)$
- This point of convergence is called the vanishing point
- What happens if $D_{Z}=0$?

Consequence 2: Parallel lines converge at a point

What about planes?

$$
\begin{aligned}
& N_{X} X+N_{Y} Y+N_{Z} Z=d \\
\Rightarrow & N_{X} \frac{X}{Z}+N_{Y} \frac{Y}{Z}+N_{Z}=\frac{d}{Z} \\
\Rightarrow & N_{X} x+N_{Y} y+N_{Z}=\frac{d}{Z}
\end{aligned}
$$

Take the limit as Z approaches infinity

$$
N_{X} x+N_{Y} y+N_{Z}=0
$$

Changing coordinate systems

Rotations and translations

- How do you represent a rotation?
- A point in 3D: (X,Y,Z)
- Rotations can be represented as a matrix multiplication

$$
\mathbf{v}^{\prime}=R \mathbf{v}
$$

-What are the properties of rotation matrices?

Properties of rotation matrices

- Rotation does not change the length of vectors

$$
\begin{aligned}
\mathbf{v}^{\prime} & =R \mathbf{v} \\
\left\|\mathbf{v}^{\prime}\right\|^{2} & =\mathbf{v}^{\prime T} \mathbf{v}^{\prime} \\
& =\mathbf{v}^{T} R^{T} R \mathbf{v} \\
\|\mathbf{v}\|^{2} & =\mathbf{v}^{T} \mathbf{v} \\
\Rightarrow R^{T} R & =I
\end{aligned}
$$

Properties of rotation matrices

$$
\begin{aligned}
& \Rightarrow R^{T} R=I \\
& \Rightarrow \operatorname{det}(R)^{2}=1 \\
& \Rightarrow \operatorname{det}(R)= \pm 1 \\
\operatorname{det}(R)=1 & \quad \operatorname{det}(R)=-1 \\
\text { Rotation } & \quad \text { Reflection }
\end{aligned}
$$

Rotation matrices

- Rotations in 3D have an axis and an angle
- Axis: vector that does not change when rotated

$$
R \mathbf{v}=\mathbf{v}
$$

- Rotation matrix has eigenvector that has eigenvalue 1

Rotation matrices from axis and angle

- Rotation matrix for rotation about axis \boldsymbol{v} and θ
- First define the following matrix

$$
[\mathbf{v}]_{\times}=\left[\begin{array}{ccc}
0 & -v_{z} & v_{y} \\
v_{z} & 0 & -v_{x} \\
-v_{y} & v_{x} & 0
\end{array}\right]
$$

- Interesting fact: this matrix represents cross product

$$
[\mathbf{v}]_{\times} \mathbf{x}=\mathbf{v} \times \mathbf{x}
$$

Rotation matrices from axis and angle

- Rotation matrix for rotation about axis \boldsymbol{v} and θ
- Rodrigues' formula for rotation matrices

$$
R=I+(\sin \theta)[\mathbf{v}]_{\times}+(1-\cos \theta)[\mathbf{v}]_{\times}^{2}
$$

Translations

$$
\mathrm{x}^{\prime}=\mathrm{x}+\mathrm{t}
$$

- Can this be written as a matrix multiplication?

Putting everything together

- Change coordinate system so that center of the coordinate system is at pinhole and Z axis is along viewing direction

$$
\mathbf{x}_{w}^{\prime}=R \mathbf{x}_{w}+\mathbf{t}
$$

- Perspective projection

$$
\begin{aligned}
\mathbf{x}_{w}^{\prime} & \equiv(X, Y, Z) & x & =\frac{X}{Z} \\
\mathbf{x}_{i m g}^{\prime} & \equiv(x, y) & y & =\frac{Y}{Z}
\end{aligned}
$$

The projection equation

$$
\begin{aligned}
& x=\frac{X}{Z} \\
& y=\frac{Y}{Z}
\end{aligned}
$$

- Is this equation linear?
- Can this equation be represented by a matrix multiplication?

Is projection linear?

$$
\begin{aligned}
X^{\prime}=a X+b & x^{\prime}=\frac{a X+b}{a Z+b} \\
Y^{\prime}=a Y+b & \\
Z^{\prime}=a Z+b & y^{\prime}=\frac{a Y+b}{a Z+b}
\end{aligned}
$$

Can projection be represented as a matrix multiplication?

Matrix multiplication $\left[\begin{array}{lll}a & b & c \\ p & q & r\end{array}\right]\left[\begin{array}{c}X \\ Y \\ Z\end{array}\right]=\left[\begin{array}{l}a X+b Y+c Z \\ p X+q Y+r Z\end{array}\right]$

Perspective projection

$$
\begin{aligned}
& x=\frac{X}{Z} \\
& y=\frac{Y}{Z}
\end{aligned}
$$

The space of rays

- Every point on a ray maps it to a point on image plane
- Perspective projection maps rays to points
- All points ($\lambda x, \lambda y, \lambda)$ map to the same image point ($x, y, 1$)

Projective space

- Standard 2D space (plane) \mathbb{R}^{2} : Each point represented by 2 coordinates (x, y)
- Projective 2D space (plane) \mathbb{P}^{2} : Each "point" represented by 3 coordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$), BUT:
- $(\lambda x, \lambda y, \lambda z) \equiv(x, y, z)$
- Mapping \mathbb{R}^{2} to \mathbb{P}^{2} (points to rays):

$$
(x, y) \rightarrow(x, y, 1)
$$

- Mapping \mathbb{P}^{2} to \mathbb{R}^{2} (rays to points):

$$
(x, y, z) \rightarrow\left(\frac{x}{z}, \frac{y}{z}\right)
$$

Projective space and homogenous coordinates

- Mapping \mathbb{R}^{2} to \mathbb{P}^{2} (points to rays):

$$
(x, y) \rightarrow(x, y, 1)
$$

- Mapping \mathbb{P}^{2} to \mathbb{R}^{2} (rays to points):

$$
(x, y, z) \rightarrow\left(\frac{x}{z}, \frac{y}{z}\right)
$$

- A change of coordinates
- Also called homogenous coordinates

Homogenous coordinates

- In standard Euclidean coordinates
- 2D points : (x, y)
-3D points : (x, y, z)
- In homogenous coordinates
- 2D points : $(x, y, 1)$
-3D points : $(x, y, z, 1)$

Why homogenous coordinates?

$$
\begin{array}{cc}
{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right]=\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{c}
\frac{X}{Z} \\
\frac{Y}{Z} \\
1
\end{array}\right]} \\
\begin{array}{c}
\text { Homogenous } \\
\text { coordinates of } \\
\text { world point }
\end{array} & \begin{array}{c}
\text { Homogenous } \\
\text { coordinates of } \\
\text { image point }
\end{array} \\
\hline
\end{array}
$$

Why homogenous coordinates?

$$
\begin{gathered}
{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right] \equiv\left[\begin{array}{c}
\frac{X}{Z} \\
\frac{Y}{Z} \\
1
\end{array}\right]} \\
P \overrightarrow{\mathbf{x}}_{w}=\overrightarrow{\mathbf{x}}_{i m g}
\end{gathered}
$$

- Perspective projection is matrix multiplication in homogenous coordinates!

Why homogenous coordinates?

$$
\left[\begin{array}{llll}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

- Translation is matrix multiplication in homogenous coordinates!

Homogenous coordinates

$\left[\begin{array}{llll}a & b & c & t_{x} \\ d & e & f & t_{y} \\ g & h & i & t_{z} \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}X \\ Y \\ Z \\ 1\end{array}\right]=\left[\begin{array}{c}a X+b Y+c Z+t_{x} \\ d X+e Y+f Z+t_{y} \\ g X+h Y+i Z+t_{z} \\ 1\end{array}\right]$

$$
\left[\begin{array}{cc}
M & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right]=\left[\begin{array}{c}
M \mathbf{x}_{w}+\mathbf{t} \\
1
\end{array}\right]
$$

Homogenous coordinates

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right] \equiv\left[\begin{array}{c}
\frac{X}{Z} \\
\frac{Y}{Z} \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \longmapsto\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right]
$$

Perspective projection in homogenous coordinates

$$
\begin{gathered}
\overrightarrow{\mathbf{x}}_{i m g}=\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right]\left[\begin{array}{cc}
R & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
\overrightarrow{\mathbf{x}}_{i m g}=\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}
\end{gathered}
$$

More about matrix transformations

$\left[\begin{array}{ll}I & \mathbf{0}\end{array}\right] 3 \times 4:$ Perspective projection
$\left[\begin{array}{cc}I & \mathbf{t} \\ \mathbf{0}^{T} & 1\end{array}\right]$
4×4 : Translation
$\left[\begin{array}{cc}M & \mathbf{t} \\ \mathbf{0}^{T} & 1\end{array}\right] \begin{aligned} & 4 \times 4: \text { Affine transformation } \\ & \text { (linear transformation }+\end{aligned}$ translation)

More about matrix transformations
$\left[\begin{array}{cc}M & \mathbf{t} \\ \mathbf{0}^{T} & 1\end{array}\right]$
$M^{T} M=I$
Euclidean

More about matrix transformations

$$
\left[\begin{array}{cc}
M & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]
$$

$$
M=s R
$$

$$
R^{T} R=I
$$

Similarity
transformation

More about matrix transformations

$$
\left[\begin{array}{ll}
M & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]
$$

$$
M=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & s_{z}
\end{array}\right]
$$

Anisotropic scaling and translation

More about matrix transformations
$\left[\begin{array}{ll}M & \mathbf{t} \\ \mathbf{0}^{T} & 1\end{array}\right]$

General affine transformation

Matrix transformations in 2D

