## Feature descriptors and matching

## Detections at multiple scales



Figure 1. Multi-scale Oriented Patches (MOPS) extracted at five pyramid levels from one of the Matier images. The boxes show the feature orientation and the region from which the descriptor vector is sampled.

## Invariance of MOPS

- Intensity
- Scale
- Rotation


## Color and Lighting



## Out-of-plane rotation



## Better representation than color: Edges



## Towards a better feature descriptor

- Match pattern of edges
- Edge orientation - clue to shape
- Be resilient to small deformations
- Deformations might move pixels around, but slightly
- Deformations might change edge orientations, but slightly


## Invariance to deformation by quantization



## Invariance to deformation by quantization

$$
g(\theta)=\left\{\begin{array}{lr}
0 & \text { if } 0<\theta<2 \pi / N \\
1 & \text { if } 2 \pi / N<\theta<4 \pi / N \\
2 & \text { if } 4 \pi / N<\theta<6 \pi / N \\
& \ldots \\
N-1 & \text { if } 2(N-1) \pi / N
\end{array}\right.
$$

## Spatial invariance by histograms



2 blue balls, one red box


## Rotation Invariance by Orientation Normalization

- Compute orientation histogram
- Select dominant orientation
- Normalize: rotate to fixed orientation




## The SIFT descriptor

- Compute edge magnitudes + orientations
- Quantize orientations (invariance to def)
- Divide into spatial cells
- Compute orientation histogram in each cell (spatial invariance)



## The SIFT descriptor



SIFT - Lowe IJCV 2004

## Scale Invariant Feature Transform

Basic idea:

- DoG for scale-space feature detection
- Take $16 \times 16$ square window around detected feature
- Compute gradient orientation for each pixel
- Throw out weak edges (threshold gradient magnitude)
- Create histogram of surviving edge orientations


angle histogram


Keypoint descriptor
Adapted from slide by David Lowe

## SIFT descriptor

## Create histogram

- Divide the $16 \times 16$ window into a $4 \times 4$ grid of cells ( $2 \times 2$ case shown below)
- Compute an orientation histogram for each cell
- 16 cells * 8 orientations $=128$ dimensional descriptor



## SIFT vector formation

- Computed on rotated and scaled version of window according to computed orientation \& scale
- resample the window
- Based on gradients weighted by a Gaussian



## Ensure smoothness

- Trilinear interpolation
- a given gradient contributes to 8 bins:

4 in space times 2 in orientation


## Reduce effect of illumination

- 128-dim vector normalized to 1
- Threshold gradient magnitudes to avoid excessive influence of high gradients
- after normalization, clamp gradients $>0.2$
- renormalize



## Properties of SIFT

## Extraordinarily robust matching technique

- Can handle changes in viewpoint
- Up to about 60 degree out of plane rotation
- Can handle significant changes in illumination
- Sometimes even day vs. night (below)
- Fast and efficient-can run in real time
- Lots of code available: http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known imple mentations of SIFT



## Summary

- Keypoint detection: repeatable and distinctive
- Corners, blobs, stable regions
- Harris, DoG

- Descriptors: robust and selective
- spatial histograms of orientation
- SIFT and variants are typically good for stitching and recognition
- But, need not stick to one



## Which features match?



## Feature matching

Given a feature in $I_{1}$, how to find the best match in $\mathrm{I}_{2}$ ?

1. Define distance function that compares two descriptors
2. Test all the features in $I_{2}$, find the one with min distance

## Feature distance

How to define the difference between two features $f_{1}, f_{2}$ ?

- Simple approach: $L_{2}$ distance, $\left|\left|f_{1}-f_{2}\right|\right|$
- can give good scores to ambiguous (incorrect) matches

$I_{1}$

$I_{2}$


## Feature distance

How to define the difference between two features $f_{1}, f_{2}$ ?

- Better approach: ratio distance $=\left\|f_{1}-f_{2}\right\| /\left\|f_{1}-f_{2}{ }^{\prime}\right\|$
- $f_{2}$ is best SSD match to $f_{1}$ in $I_{2}$
- $f_{2}{ }^{\prime}$ is $2^{\text {nd }}$ best SSD match to $f_{1}$ in $I_{2}$
- gives large values for ambiguous matches

$I_{1}$

$I_{2}$


## Geometry of Image Formation

## The pinhole camera



Let's get into the math

## The pinhole camera



The pinhole camera


## The pinhole camera



## The pinhole camera



## The pinhole camera

## The pinhole camera

- Pinhole camera collapses ray $O P$ to point p
- Any point on ray OP $=0+$ $\lambda(P-O)=(\lambda X, \lambda Y, \lambda Z)$
- For this point to lie on $\mathrm{Z}=-1$ plane:

$$
\begin{aligned}
& \lambda^{*} Z=-1 \\
& \Rightarrow \lambda^{*}=\frac{-1}{Z}
\end{aligned}
$$

- Coordinates of point p :

$$
\left(\lambda^{*} X, \lambda^{*} Y, \lambda^{*} Z\right)=\left(\frac{-X}{Z}, \frac{-Y}{Z},-1\right)
$$



## The projection equation

- A point $P=(X, Y, Z)$ in 3D projects to a point $p=(x, y)$ in the image

$$
\begin{aligned}
& x=\frac{-X}{Z} \\
& y=\frac{-Y}{Z}
\end{aligned}
$$

- But pinhole camera's image is inverted, invert it back!

$$
\begin{aligned}
& x=\frac{X}{Z} \\
& y=\frac{Y}{Z}
\end{aligned}
$$

## Another derivation



## A virtual image plane

- A pinhole camera produces an inverted image
- Imagine a "virtual image plane" in the front of the camera




## The projection equation

$$
\begin{aligned}
& x=\frac{X}{Z} \\
& y=\frac{Y}{Z}
\end{aligned}
$$

## Consequence 1: Farther away objects are smaller



Image of foot: $\left(\frac{X}{Z}, \frac{Y}{Z}\right)$
Image of head: $\left(\frac{X}{Z}, \frac{Y+h}{Z}\right)$

$$
\frac{Y+h}{Z}-\frac{Y}{Z}=\frac{h}{Z}
$$

## Consequence 2: Parallel lines converge at a point

- Point on a line passing through point A with direction D:

$$
Q(\lambda)=A+\lambda D
$$

- Parallel lines have the same direction but pass through different points

$$
\begin{aligned}
& Q(\lambda)=A+\lambda D \\
& R(\lambda)=B+\lambda D
\end{aligned}
$$



## Consequence 2: Parallel lines converge at a point

- Parallel lines have the same direction but pass through different points

$$
\begin{aligned}
& Q(\lambda)=A+\lambda D \\
& R(\lambda)=B+\lambda D
\end{aligned}
$$

- $A=\left(A_{X}, A_{Y}, A_{Z}\right)$
- $B=\left(B_{X}, B_{Y}, B_{Z}\right)$

- $D=\left(D_{X}, D_{Y}, D_{Z}\right)$


## Consequence 2: Parallel lines converge at a point

- $Q(\lambda)=\left(A_{X}+\lambda D_{X}, A_{Y}+\lambda D_{Y}, A_{Z}+\lambda D_{Z}\right)$
- $R(\lambda)=\left(B_{X}+\lambda D_{X}, B_{Y}+\lambda D_{Y}, B_{Z}+\lambda D_{Z}\right)$
- $q(\lambda)=\left(\frac{A_{X}+\lambda D_{X}}{A_{Z}+\lambda D_{Z}}, \frac{A_{Y}+\lambda D_{Y}}{A_{Z}+\lambda D_{Z}}\right)$
- $r(\lambda)=\left(\frac{B_{X}+\lambda D_{X}}{B_{Z}+\lambda D_{Z}}, \frac{B_{Y}+\lambda D_{Y}}{B_{Z}+\lambda D_{Z}}\right)$
- Need to look at these points as $Z$ goes to infinity
- Same as $\lambda \rightarrow \infty$


## Consequence 2: Parallel lines converge at a point

- $q(\lambda)=\left(\frac{A_{X}+\lambda D_{X}}{A_{Z}+\lambda D_{Z}}, \frac{A_{Y}+\lambda D_{Y}}{A_{Z}+\lambda D_{Z}}\right)$
- $r(\lambda)=\left(\frac{B_{X}+\lambda D_{X}}{B_{Z}+\lambda D_{Z}}, \frac{B_{Y}+\lambda D_{Y}}{B_{Z}+\lambda D_{Z}}\right)$

$$
\lim _{\lambda \rightarrow \infty} \frac{A_{X}+\lambda D_{X}}{A_{Z}+\lambda D_{Z}}=\lim _{\lambda \rightarrow \infty} \frac{\frac{A_{X}}{\lambda}+D_{X}}{\frac{A_{Z}}{\lambda}+D_{Z}}=\frac{D_{X}}{D_{Z}}
$$

$\lim _{\lambda \rightarrow \infty} q(\lambda)=\left(\frac{D_{X}}{D_{Z}}, \frac{D_{Y}}{D_{Z}}\right)$

$$
\lim _{\lambda \rightarrow \infty} r(\lambda)=\left(\frac{D_{X}}{D_{Z}}, \frac{D_{Y}}{D_{Z}}\right)
$$

## Consequence 2: Parallel lines converge at a point

- Parallel lines have the same direction but pass through different points

$$
\begin{aligned}
& Q(\lambda)=A+\lambda D \\
& R(\lambda)=B+\lambda D
\end{aligned}
$$

- Parallel lines converge at the same point $\left(\frac{D_{X}}{D_{Z}}, \frac{D_{Y}}{D_{Z}}\right)$
- This point of convergence is called the vanishing point
- What happens if $D_{Z}=0$ ?


## Consequence 2: Parallel lines converge at a point



## What about planes?



$$
\begin{aligned}
& N_{X} X+N_{Y} Y+N_{Z} Z=d \\
\Rightarrow & N_{X} \frac{X}{Z}+N_{Y} \frac{Y}{Z}+N_{Z}=\frac{d}{Z} \\
\Rightarrow & N_{X} x+N_{Y} y+N_{Z}=\frac{d}{Z}
\end{aligned}
$$

Take the limit as Z approaches infinity

$$
N_{X} x+N_{Y} y+N_{Z}=0
$$

## What about planes?



Normal: $\left(N_{X}, N_{Y}, N_{Z}\right)$
What do parallel planes look like?


## Vanishing line

$$
N_{X} X+N_{Y} Y+N_{Z} Z=d
$$

- What happens if $\mathrm{N}_{\mathrm{X}}=\mathrm{N}_{\mathrm{Y}}=0$ ?
- Equation of the plane: $Z=c$
- Vanishing line?

