
Feature	descriptors	and	
matching



Detections	at	multiple	scales



Invariance	of	MOPS

• Intensity

• Scale

• Rotation



Color	and	Lighting



Out-of-plane	rotation

Out-of-plane	rotation



Depth	
Discontinuity

Normal	
discontinuit

y

Albedo	Edge

Shadow

Better	representation	
than	color:	Edges



Towards	a	better	feature	
descriptor
• Match	pattern	of	edges

• Edge	orientation	– clue	to	shape

• Be	resilient	to	small	deformations
• Deformations	might	move	pixels	around,	but	slightly
• Deformations	might	change	edge	orientations,	but	
slightly



Invariance	to	deformation	by	
quantization

37 42

Between	30	and	45



Invariance	to	deformation	by	
quantization

g(✓) =

8
>>>><

>>>>:

0 if 0 < ✓ < 2⇡/N
1 if 2⇡/N < ✓ < 4⇡/N
2 if 4⇡/N < ✓ < 6⇡/N

. . .
N � 1 if 2(N � 1)⇡/N



Spatial	invariance	by	histograms

2	blue	balls,	one	red	box

balls boxes

2

1



T.	Tuytelaars,	B.	Leibe

Rotation	Invariance	by	Orientation	
Normalization
• Compute	orientation	histogram
• Select	dominant	orientation
• Normalize:	rotate	to	fixed	orientation	

0 2p

[Lowe,	SIFT,	1999]



The	SIFT	descriptor

• Compute	edge	magnitudes	+	orientations
• Quantize	orientations	(invariance	to	def)
• Divide	into	spatial	cells
• Compute	orientation	histogram	in	each	cell	(spatial	
invariance)

Distinctive	Image	Features	from	Scale-Invariant	Keypoints.	Lowe.	In	IJCV	2004



The	SIFT	descriptor

SIFT	– Lowe	IJCV	2004



Basic	idea:
• DoG for	scale-space	feature	detection
• Take	16x16	square	window	around	detected	feature

• Compute	gradient	orientation	for	each	pixel
• Throw	out	weak	edges	(threshold	gradient	magnitude)
• Create	histogram	of	surviving	edge	orientations

Scale	Invariant	Feature	Transform

Adapted	from	slide	by	David	Lowe

0 2p

angle histogram



SIFT	descriptor
Create	histogram

• Divide	the	16x16	window	into	a	4x4	grid	of	cells	(2x2	case	shown	below)
• Compute	an	orientation	histogram	for	each	cell
• 16	cells	*	8	orientations	=	128	dimensional	descriptor

Adapted	from	slide	by	David	Lowe



SIFT	vector	formation
• Computed	on	rotated	and	scaled	version	of	window	
according	to	computed	orientation	&	scale

• resample	the	window

• Based	on	gradients	weighted	by	a	Gaussian



Ensure	smoothness
• Trilinear interpolation	

• a	given	gradient	contributes	to	8	bins:	
4	in	space	times	2	in	orientation



Reduce	effect	of	illumination
• 128-dim	vector	normalized	to	1	
• Threshold	gradient	magnitudes	to	avoid	excessive	
influence	of	high	gradients

• after	normalization,	clamp	gradients	>0.2
• renormalize



Properties	of	SIFT
Extraordinarily	robust	matching	technique

• Can	handle	changes	in	viewpoint
• Up	to	about	60	degree	out	of	plane	rotation

• Can	handle	significant	changes	in	illumination
• Sometimes	even	day	vs.	night	(below)

• Fast	and	efficient—can	run	in	real	time
• Lots	of	code	available:	
http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_imple
mentations_of_SIFT



Summary
• Keypoint detection:	repeatable	
and	distinctive

• Corners,	blobs,	stable	regions
• Harris,	DoG

• Descriptors:	robust	and	selective
• spatial	histograms	of	orientation
• SIFT	and	variants	are	typically	good	
for	stitching	and	recognition

• But,	need	not	stick	to	one



Which	features	match?



Feature	matching

Given	a	feature	in	I1,	how	to	find	the	best	match	in	
I2?
1. Define	distance	function	that	compares	two	

descriptors
2. Test	all	the	features	in	I2,	find	the	one	with	min	

distance



Feature	distance
How	to	define	the	difference	between	two	features	f1,	f2?

• Simple	approach:	L2 distance,	||f1 - f2 ||	
• can	give	good	scores	to	ambiguous	(incorrect)	matches	

I1 I2

f1 f2



f1 f2f2'

Feature	distance
How	to	define	the	difference	between	two	features	f1,	f2?

• Better	approach:		ratio	distance	=	||f1 - f2 ||	/	||	f1 - f2’	||	
• f2 is	best	SSD	match	to	f1 in	I2
• f2’		is		2nd best	SSD	match	to	f1 in	I2
• gives	large	values	for	ambiguous	matches

I1 I2



Geometry	of	Image	
Formation



The	pinhole	camera

Let’s	get	into	the	math



The	pinhole	camera



The	pinhole	camera



The	pinhole	camera Y

X

Z O

Z=-1

P	=	
(X,Y,Z) p	=	

(x,y)



The	pinhole	camera Y

X

Z O

Z=-1

P	=	
(X,Y,Z) p	=	

(x,y)



The	pinhole	camera Y

X

Z O

Z=-1

P	=	
(X,Y,Z) p	=	

(x,y)

𝜆 = 0 ⇒ 𝑄 𝜆 = 𝑂
𝜆 = 1 ⇒ 𝑄 𝜆 = 𝑃

𝑄 𝜆
= 0 + 𝜆 𝑋 − 0 , 0 + 𝜆 𝑌 − 0 , 0 + 𝜆 𝑍 − 0
= (𝜆𝑋, 𝜆𝑌, 𝜆𝑍)



The	pinhole	camera

• Pinhole	camera	collapses	ray	OP	
to	point	p

• Any	point	on	ray	OP	=	𝑂 +
𝜆 𝑃 − 𝑂 = 𝜆𝑋, 𝜆𝑌, 𝜆𝑍

• For	this	point	to	lie	on	Z=-1	plane:
𝜆∗𝑍 = −1
⇒ 𝜆∗ = 	

−1
𝑍

• Coordinates	of	point	p:

Y

X

Z O
Z=-1

P	=	
(X,Y,Z)

p	=	
(x,y)

(�⇤X,�⇤Y,�⇤Z) = (
�X

Z
,
�Y

Z
,�1)



The	projection	equation

• A	point	P	=	(X,	Y,	Z)	in	3D	projects	to	a	point	p	=	(x,y)	
in	the	image

• But	pinhole	camera’s	image	is	inverted,	invert	it	
back!

x =
�X

Z

y =
�Y

Z

x =
X

Z

y =
Y

Z



Another	derivation

P	=	(X,Y,Z)

O

p	=	
(x,y,z)

Y

yZ

1

Y

Z
=

y

1



A	virtual	image	plane

• A	pinhole	camera	produces	an	inverted	image
• Imagine	a	”virtual	image	plane”	in	the	front	of	the	
camera

P

O

Y

yZ

1

P

O

Y y

1
Z



The	projection	equation

x =
X

Z

y =
Y

Z



Consequence	1:	Farther	away	
objects	are	smaller

(X,	Y,	Z)

(X,	Y	+	h,	Z)

Y + h

Z
� Y

Z
=

h

Z

Image	of	foot:	

Image	of	head:

(
X

Z
,
Y

Z
)

(
X

Z
,
Y + h

Z
)



Consequence	2:	Parallel	lines	
converge	at	a	point
• Point	on	a	line	passing	
through	point	A	with	
direction	D:
𝑄 𝜆 = 𝐴 + 𝜆𝐷

• Parallel	lines	have	the	
same	direction	but	pass	
through	different	points
𝑄 𝜆 = 𝐴 + 𝜆𝐷
𝑅 𝜆 = 𝐵 + 𝜆𝐷

•



Consequence	2:	Parallel	lines	
converge	at	a	point
• Parallel	lines	have	the	
same	direction	but	pass	
through	different	points
𝑄 𝜆 = 𝐴 + 𝜆𝐷
𝑅 𝜆 = 𝐵 + 𝜆𝐷

• 𝐴 = 𝐴7, 𝐴8, 𝐴9
• 𝐵 = 𝐵7, 𝐵8, 𝐵9
• 𝐷 = 𝐷7, 𝐷8, 𝐷9



Consequence	2:	Parallel	lines	
converge	at	a	point
• 𝑄 𝜆 = 𝐴7 + 𝜆𝐷7, 𝐴8 + 𝜆𝐷8, 𝐴9 + 𝜆𝐷9
• 𝑅 𝜆 = 𝐵7 + 𝜆𝐷7, 𝐵8 + 𝜆𝐷8, 𝐵9 + 𝜆𝐷9
• 𝑞 𝜆 = ;<=>?<

;@=>?@
, ;A=>?A
;@=>?@

• 𝑟 𝜆 = C<=>?<
C@=>?@

, CA=>?A
C@=>?@

• Need	to	look	at	these	points	as	
Z	goes	to	infinity	

• Same	as	𝜆 → ∞



Consequence	2:	Parallel	lines	
converge	at	a	point
• 𝑞 𝜆 = ;<=>?<

;@=>?@
, ;A=>?A
;@=>?@

• 𝑟 𝜆 = C<=>?<
C@=>?@

, CA=>?A
C@=>?@

lim
�!1

AX + �DX

AZ + �DZ
= lim

�!1

AX
� +DX

AZ
� +DZ

=
DX

DZ

lim
�!1

q(�) = (
DX

DZ
,
DY

DZ
) lim

�!1
r(�) = (

DX

DZ
,
DY

DZ
)



Consequence	2:	Parallel	lines	
converge	at	a	point
• Parallel	lines	have	the	same	direction	but	pass	
through	different	points

𝑄 𝜆 = 𝐴 + 𝜆𝐷
𝑅 𝜆 = 𝐵 + 𝜆𝐷

• Parallel	lines	converge	at	the	same	point	(?<
?@
, ?A
?@
)

• This	point	of	convergence	is	called	the	vanishing	
point

• What	happens	if	𝐷9 = 0?



Consequence	2:	Parallel	lines	
converge	at	a	point



What	about	planes?

NXX +NY Y +NZZ = d

) NX
X

Z
+NY

Y

Z
+NZ =

d

Z

) NXx+NY y +NZ =
d

Z

NXx+NY y +NZ = 0
Take	the	limit	as	Z	approaches	infinity

Vanishing	line	of	
a	plane



What	about	planes?

NXX +NY Y +NZZ = d
Normal:	(NX,	NY,	NZ)

What	do	parallel	planes	look	like?
NXX +NY Y +NZZ = cNXX +NY Y +NZZ = d

NXx+NY y +NZ = 0 NXx+NY y +NZ = 0

Parallel	planes	converge!
Vanishing	lines



Vanishing	line

• What	happens	if	NX =	NY =	0?
• Equation	of	the	plane:	Z	=	c
• Vanishing	line?

NXX +NY Y +NZZ = d


