
Feature	description	and	
matching



Matching	feature	points
We	know	how	to	detect	good	points
Next	question:	How	to	match	them?

Two	interrelated	questions:
1. How	do	we	describe	each	feature	point?
2. How	do	we	match	descriptions?

?



Feature	descriptor

𝑥" 𝑥# 𝑦" 𝑦#



Feature	matching

• Measure	the	distance	between	(or	similarity	
between)	every	pair	of	descriptors

𝒚𝟏 𝒚𝟐

𝒙𝟏 𝑑(𝑥", 𝑦") 𝑑(𝑥", 𝑦#)

𝒙𝟐 𝑑(𝑥#, 𝑦") 𝑑(𝑥#, 𝑦#)



Invariance	vs.	discriminability

• Invariance:
– Distance	between	descriptors	should	be	small	
even	if	image	is	transformed

• Discriminability:
– Descriptor	should	be	highly	unique	for	each	point	
(far	away	from	other	points	in	the	image)



Image	transformations
• Geometric

Rotation

Scale

• Photometric
Intensity	change



Invariance

• Most	feature	descriptors	are	designed	to	be	
invariant	to	
– Translation,	2D	rotation,	scale

• They	can	usually	also	handle
– Limited	3D	rotations	(SIFT	works	up	to	about	60	degrees)
– Limited	affine	transformations	(some	are	fully	affine	invariant)
– Limited	illumination/contrast	changes



How	to	achieve	invariance

Design	an	invariant	feature	descriptor
– Simplest	descriptor:	a	single	0

• What’s	this	invariant	to?
• Is	this	discriminative?

– Next	simplest	descriptor:	a	single	pixel
• What’s	this	invariant	to?
• Is	this	discriminative?



The	aperture	problem



The	aperture	problem

• Use	a	whole	patch	instead	of	a	pixel?



SSD

• Use	as	descriptor	the	whole	patch
• Match	descriptors	using	euclidean distance
• 𝑑 𝑥, 𝑦 = 	 ||𝑥	 − 𝑦||#



SSD



SSD



NCC	- Normalized	Cross	Correlation

• Lighting	and	color	change	pixel	intensities
• Example:	increase	brightness	/	contrast
• 𝐼2 = 𝛼𝐼 + 𝛽
• Subtract	patch	mean:	invariance	to	𝛽
• Divide	by	norm	of	vector:	invariance	to	𝛼
• 𝑥′ = 𝑥−	< 𝑥 >

• 𝑥′′ = 	 92
||92||

• similarity	=	𝑥22 ⋅ 𝑦′′



NCC	- Normalized	cross	correlation



Basic	correspondence

• Image	patch	as	descriptor,	NCC	as	similarity
• Invariant	to?

– Photometric	transformations?
– Translation?
– Rotation?



• Find	dominant	orientation	of	the	image	patch
– This	is	given	by	xmax,	the	eigenvector	of	M corresponding	to	lmax (the	

larger eigenvalue)
– Rotate	the	patch	according	to	this	angle

Rotation	invariance	for	
feature	descriptors

Figure	by	Matthew	Brown



Take	40x40	square	window	
around	detected	feature
– Scale	to	1/5	size	(using	

prefiltering)
– Rotate	to	horizontal
– Sample	8x8	square	window	

centered	at	feature
– Intensity	normalize	the	

window	by	subtracting	the	
mean,	dividing	by	the	
standard	deviation	in	the	
window

CSE	576:	Computer	Vision

Multiscale	Oriented	PatcheS descriptor

8 pixels

Adapted	from	slide	by	Matthew	Brown



Detections	at	multiple	scales



• Find	dominant	orientation	of	the	image	patch
– This	is	given	by	xmax,	the	eigenvector	of	M corresponding	to	lmax (the	

larger eigenvalue)
– Rotate	the	patch	according	to	this	angle

Rotation	invariance	for	feature	descriptors

Figure	by	Matthew	Brown



Detour:	Image	transformations

• What	does	it	mean	to	rotate	a	patch?
• Each	pixel	has	coordinates	(x,y)
• Rotation	represented	by	a	matrix	R
• Pixel’s	new	coordinates:

• I’(x’,y’)	=	I(x,y)	


x0

y0

�
= R


x
y
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Detour:	Image	transformations

• What	if	destination	pixel	is	fractional?
• Flip	computation:	for	every	destination	pixel	
figure	out	source	pixel
– Use	interpolation	if	source	location	is	fractional

• I’(x’,	y’)	=	I(x,y)	


x
y

�
= R�1


x0

y0
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Take	40x40	square	window	
around	detected	feature
– Scale	to	1/5	size	(using	

prefiltering)
– Rotate	to	horizontal
– Sample	8x8	square	window	

centered	at	feature
– Intensity	normalize	the	

window	by	subtracting	the	
mean,	dividing	by	the	
standard	deviation	in	the	
window

CSE	576:	Computer	Vision

Multiscale	Oriented	PatcheS descriptor

8 pixels

Adapted	from	slide	by	Matthew	Brown



MOPS	descriptor

x

y

•You	can	combine	transformations	together	to	get	the	
final	transformation

T	=	?
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Detections	at	multiple	scales



Invariance	of	MOPS

• Intensity

• Scale

• Rotation



Color	and	Lighting



Out-of-plane	rotation

Out-of-plane	rotation



Depth	
Discontinuity

Normal	
discontinuit

y

Albedo	Edge

Shadow

Better	representation	
than	color:	Edges



Towards	a	better	feature	descriptor

• Match	pattern	of	edges
– Edge	orientation	– clue	to	shape

• Be	resilient	to	small	deformations
– Deformations	might	move	pixels	around,	but	
slightly

– Deformations	might	change	edge	orientations,	but	
slightly



Invariance	to	deformation	by	
quantization

37 42

Between	30	and	45



Invariance	to	deformation	by	
quantization

g(✓) =

8
>>>><

>>>>:

0 if 0 < ✓ < 2⇡/N
1 if 2⇡/N < ✓ < 4⇡/N
2 if 4⇡/N < ✓ < 6⇡/N

. . .
N � 1 if 2(N � 1)⇡/N



Spatial	invariance	by	histograms

2	blue	balls,	one	red	box

balls boxes

2

1



T.	Tuytelaars,	B.	Leibe

Rotation	Invariance	by	Orientation	
Normalization

• Compute	orientation	histogram
• Select	dominant	orientation
• Normalize:	rotate	to	fixed	orientation	

0 2p

[Lowe,	SIFT,	1999]



The	SIFT	descriptor

• Compute	edge	magnitudes	+	orientations
• Quantize	orientations	(invariance	to	def)
• Divide	into	spatial	cells
• Compute	orientation	histogram	in	each	cell	
(spatial	invariance)

Distinctive	Image	Features	from	Scale-Invariant	Keypoints.	Lowe.	In	IJCV	2004



The	SIFT	descriptor

SIFT	– Lowe	IJCV	2004



Basic	idea:
• DoG for	scale-space	feature	detection
• Take	16x16	square	window	around	detected	feature

• Compute	gradient	orientation	for	each	pixel
• Throw	out	weak	edges	(threshold	gradient	magnitude)
• Create	histogram	of	surviving	edge	orientations

Scale	Invariant	Feature	Transform

Adapted	from	slide	by	David	Lowe

0 2p

angle histogram



SIFT	descriptor
Create	histogram

• Divide	the	16x16	window	into	a	4x4	grid	of	cells	(2x2	case	shown	below)
• Compute	an	orientation	histogram	for	each	cell
• 16	cells	*	8	orientations	=	128	dimensional	descriptor

Adapted	from	slide	by	David	Lowe



SIFT	vector	formation
• Computed	on	rotated	and	scaled	version	of	window	
according	to	computed	orientation	&	scale
– resample	the	window

• Based	on	gradients	weighted	by	a	Gaussian



Ensure	smoothness
• Trilinear interpolation	

– a	given	gradient	contributes	to	8	bins:	
4	in	space	times	2	in	orientation



Reduce	effect	of	illumination
• 128-dim	vector	normalized	to	1	
• Threshold	gradient	magnitudes	to	avoid	excessive	
influence	of	high	gradients
– after	normalization,	clamp	gradients	>0.2
– renormalize



Properties	of	SIFT
Extraordinarily	robust	matching	technique

– Can	handle	changes	in	viewpoint
• Up	to	about	60	degree	out	of	plane	rotation

– Can	handle	significant	changes	in	illumination
• Sometimes	even	day	vs.	night	(below)

– Fast	and	efficient—can	run	in	real	time
– Lots	of	code	available:	

http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_impl
ementations_of_SIFT



Summary
• Keypoint detection:	repeatable	
and	distinctive
– Corners,	blobs,	stable	regions
– Harris,	DoG

• Descriptors:	robust	and	selective
– spatial	histograms	of	orientation
– SIFT	and	variants	are	typically	good	
for	stitching	and	recognition

– But,	need	not	stick	to	one



Which	features	match?



Feature	matching

Given	a	feature	in	I1,	how	to	find	the	best	match	
in	I2?
1. Define	distance	function	that	compares	two	

descriptors
2. Test	all	the	features	in	I2,	find	the	one	with	min	

distance



Feature	distance
How	to	define	the	difference	between	two	features	f1,	f2?

– Simple	approach:	L2 distance,	||f1 - f2 ||	
– can	give	good	scores	to	ambiguous	(incorrect)	matches	

I1 I2

f1 f2



f1 f2f2'

Feature	distance
How	to	define	the	difference	between	two	features	f1,	f2?

• Better	approach:		ratio	distance	=	||f1 - f2 ||	/	||	f1 - f2’	||	
• f2 is	best	SSD	match	to	f1 in	I2
• f2’		is		2nd best	SSD	match	to	f1 in	I2
• gives	large	values	for	ambiguous	matches

I1 I2




