## Scale-invariant Feature Detection

## Feature description and matching

## Announcements

- HW 1 and PA 2 out tonight or tomorrow
- Schedule will be updated shortly
- Artifact voting out today
- Please vote


## Feature extraction: Corners

## 9300 Harris Corners Pkwy, Charlotte, NC



## The second moment matrix

The surface $E(u, v)$ is locally approximated by a quadratic form.

$$
\begin{aligned}
E(u, v) & \approx A u^{2}+2 B u v+C v^{2} \\
& \approx\left[\begin{array}{ll}
u & v
\end{array}\right]\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
\end{aligned}
$$

$$
A=\sum_{(x, y) \in W} I_{x}^{2}
$$

$$
B=\sum_{(x, y) \in W} I_{x} I_{y}
$$

$$
C=\sum_{(x, y) \in W} I_{y}^{2}
$$

Let's try to understand its shape.


## Interpreting the second moment matrix

Consider a horizontal "slice" of $E(u, v)$ : $\quad\left[\begin{array}{ll}u & v\end{array}\right] M\left[\begin{array}{l}u \\ v\end{array}\right]=$ const
This is the equation of an ellipse.
Diagonalization of M :

$$
M=R^{-1}\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] R
$$

The axis lengths of the ellipse are determined by the eigenvalues and the orientation is determined by $R$

slowest change

## Corner detection: the math

$$
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right]\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$



$$
\begin{aligned}
\mathrm{M} x_{\max } & =\lambda_{\max } x_{\max } \\
\mathrm{M} x_{\min } & =\lambda_{\min } x_{\min }
\end{aligned}
$$

Eigenvalues and eigenvectors of $M$

- Define shift directions with the smallest and largest change in error
- $x_{\max }=$ direction of largest increase in $E$
- $\lambda_{\max }=$ amount of increase in direction $x_{\max }$
- $x_{\text {min }}=$ direction of smallest increase in $E$
- $\lambda_{\text {min }}=$ amount of increase in direction $x_{\text {min }}$


## The Harris operator

$\lambda_{\text {min }}$ is a variant of the "Harris operator" for feature detection

$$
\begin{aligned}
& f=\frac{\lambda_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}} \\
= & \frac{\operatorname{determinant}(H)}{\operatorname{trace}(H)}
\end{aligned}
$$

- The trace is the sum of the diagonals, i.e., $\operatorname{trace}(H)=h_{11}+h_{22}$
- Very similar to $\lambda_{\text {min }}$ but less expensive (no square root)
- Called the "Harris Corner Detector" or "Harris Operator"
- Actually the Noble variant of the Harris Corner Detector
- Lots of other detectors, this is one of the most popular


## Corner response function

 $R=\operatorname{det}(M)-\alpha \operatorname{trace}(M)^{2}=\lambda_{1} \lambda_{2}-\alpha\left(\lambda_{1}+\lambda_{2}\right)^{2}$

## Corner detection summary

Here's what you do

- Compute the gradient at each point in the image
- Create the $M$ matrix from the entries in the gradient
- Compute the eigenvalues.
- Find points with large response ( $\lambda_{\text {min }}>$ threshold)
- Choose those points where $\lambda_{\text {min }}$ is a local maximum as features



## Harris features (in red)



## Harris Corners - Why so complicated?

- Can't we just check for regions with lots of gradients in the $x$ and $y$ directions?
- No! A diagonal line would satisfy that criteria



## Image transformations

- Geometric

Rotation



Scale

- Photometric

Intensity change


## Invariance and covariance

- We want corner locations to be invariant to photometric transformations and covariant to geometric transformations
- Invariance: image is transformed and corner locations do not change
- Equivariance: if we have two transformed versions of the same image, features should be detected in corresponding locations



## Image translation



- Derivatives and window function are shift-invariant

Corner location is equivariant w.r.t. translation

## Image rotation



Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner location is equivariant w.r.t. rotation

## Affine intensity change

$$
\square \quad I \rightarrow a I+b
$$

- Only derivatives are used => invariance to intensity shift $I \rightarrow I+b$
- Intensity scaling: $I \rightarrow a I$



Partially invariant to affine intensity change

## Harris Detector: Invariance Properties - Scallng


classified as edges

## So far: can localize in $x-y$, but not scale



## Scale invariant detection

Suppose you're looking for corners


Key idea: find scale that gives local maximum of $f$

- in both position and scale
- One definition of $f$ : the Harris operator


## Automatic scale selection

Lindeberg et al., 1996

$f\left(I_{i_{1} \ldots i_{m}}(x, \sigma)\right)$
Slide from Tinne Tuytelaars

## Automatic scale selection



## Implementation

- Instead of computing $f$ for larger and larger windows, we can implement using a fixed window size with a Gaussian pyramid



## Feature extraction: Corners and blobs



## Another common definition of $f$

- The Laplacian of Gaussian (LoG)



$$
\nabla^{2} g=\frac{\partial^{2} g}{\partial x^{2}}+\frac{\partial^{2} g}{\partial y^{2}}
$$

(very similar to a Difference of Gaussians (DoG) -
i.e. a Gaussian minus a slightly smaller Gaussian)

## Scale selection

- At what scale does the Laplacian achieve a maximum response for a binary circle of radius $r$ ?

image


Laplacian

## Laplacian of Gaussian

- "Blob" detector

- Find maxima and minima of LoG operataraxms.apace and scale


## Characteristic scale

- The scale that produces peak of Laplacian response

T. Lindeberg (1998). "Feature detection with automatic scale selection." International Journal of Computer Vision 30 (2): pp 77--116.

Find local maxima in position-scale space

K. Grauman, B. Leibe

## Scale-space blob detector: Example



Scale-space blob detector: Example


## Scale-space blob detector: Example



## Matching feature points

We know how to detect good points Next question: How to match them?


Two interrelated questions:

1. How do we describe each feature point?
2. How do we match descriptions?

## Feature descriptor



## Feature matching

- Measure the distance between (or similarity between) every pair of descriptors



## Invariance vs. discriminability

- Invariance:
- Distance between descriptors should be small even if image is transformed
- Discriminability:
- Descriptor should be highly unique for each point (far away from other points in the image)


## Image transformations

- Geometric

Rotation



Scale

- Photometric

Intensity change


## Invariance

- Most feature descriptors are designed to be invariant to
- Translation, 2D rotation, scale
- They can usually also handle
- Limited 3D rotations (SIFT works up to about 60 degrees)
- Limited affine transformations (some are fully affine invariant)
- Limited illumination/contrast changes


## How to achieve invariance

Design an invariant feature descriptor

- Simplest descriptor: a single 0
- What's this invariant to?
- Is this discriminative?
- Next simplest descriptor: a single pixel
- What's this invariant to?
- Is this discriminative?


## The aperture problem



## The aperture problem

- Use a whole patch instead of a pixel?



## SSD

- Use as descriptor the whole patch
- Match descriptors using euclidean distance
- $d(x, y)=\|x-y\|^{2}$



## SSD



## SSD



NCC - Normalized Cross
Correlation

- Lighting and color change pixel intensities
- Example: increase brightness / contrast
- $I^{\prime}=\alpha I+\beta$
- Subtract patch mean: invariance to $\beta$
- Divide by norm of vector: invariance to $\alpha$
- $x^{\prime}=x-\langle x\rangle$
- $x^{\prime \prime}=\frac{x \prime}{\|x \prime\|}$
- similarity $=x^{\prime \prime} \cdot y^{\prime \prime}$

NCC - Normalized cross correlation


## Basic correspondence

- Image patch as descriptor, NCC as similarity
- Invariant to?
- Photometric transformations?
- Translation?
- Rotation?


## Rotation invariance for feature descriptors

- Find dominant orientation of the image patch
- This is given by $\mathbf{x}_{\text {max }}$, the eigenvector of $\mathbf{M}$ corresponding to $\lambda_{\max }$ (the larger eigenvalue)
- Rotate the patch according to this angle


[^0]
## Multiscale Oriented PatcheS descriptor

Take $40 \times 40$ square window around detected feature

- Scale to $1 / 5$ size (using prefiltering)
- Rotate to horizontal
- Sample $8 x 8$ square window centered at feature
- Intensity normalize the window by subtracting the mean, dividing by the standard deviation in the window



## Detections at multiple scales



Figure 1. Multi-scale Oriented Patches (MOPS) extracted at five pyramid levels from one of the Matier images. The boxes show the feature orientation and the region from which the descriptor vector is sampled.

## Feature matching

Given a feature in $I_{1}$, how to find the best match in $\mathrm{I}_{2}$ ?

1. Define distance function that compares two descriptors
2. Test all the features in $I_{2}$, find the one with min distance

[^0]:    Figure by Matthew Brown

